
Business 35905 John H. Cochrane

Problem Set 5

1. Today’s yield curve is 
(1)
 = 005; 

(2)
 = 010; 

(3)
 = 015; 

(4)
 = 015Make a graph of the

expected bond price through time, with bond price on the vertical axis and time on the horizontal

axis. Describe the expected path

(a) According to the expectations hypothesis

(b) According to Fama Bliss, assuming all of the one-year regression coefficients are 0 or 1 as

appropriate. (Ignore the multi-year regressions and set all constants to zero througout the

problem) .
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Figure 1:

(c) Fama and Bliss find that the short rate is essentially a random walk. (Again simplify coef-

ficients to 0 and 1 and forget about constants.) What do they say about longer rates; what


()
+1 is implied by their regressions? (Hint, the picture will help. Then try to prove it.)

(d) By contrast, what is 
()
+1 under the expectations hypothesis? We know that “if the yield

(forward) curve is upward sloping, then we expect short term rates 
(1)
+−1 to rise in the

future”, i.e. 
(1)
+−1− 

(1)
 = 

()
 − 

(1)
 . When do we expect long term rates to rise in the

future? What is the signal that 
()
+1  

()
 ?
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(e) Is your graph consistent with Fama and Bliss’ long-run (
(1)
+1−(1) on 

()
 −(1) ) regressions?

If not, how might you modify the setup (Just give a sentence and the general idea, you don’t

have to work out a lot of algebra).

2. In this problem we’ll explore bond returns following up on Cochrane Piazzesi etc. First, get the

Fama-Bliss discount bond price data from the class website. (It’s from CRSP (via wrds is the easy

way. Ask wrds for "quarterly updates" to get the most recent data.)) As in CP, start in 1964 (the

bond data aren’t very reliable before that). We’ll use the full sample so we can see how CP and

FB are doing.

(a) Form log prices, log yields, log forward rates, one year log returns and one year excess log

returns. (Hint: You’re using monthly data so 
()
+12 = 

(−1)
+12 − 

()
 . The first row of returns

from jan 1964 to jan 1965 is, in percent units, 3.6962 3.9504 3.9390 4.0114.) Plot log yields,

log forward rates and excess log returns to make sure you are transforming the data correctly.

(b) Make an eigenvalue factor decomposition for i) yields (Λ0 =eig(cov(y)) ii) ∆yields iii)
forward rates iv) excess returns. (See note below) In each case,

i. Make a table of the variance of the 5 (or 4 for excess returns) factors as a fraction of

overall variance (100 × 
P

), and the standard deviation of the factors in percent

units (100× 05 ). This table (and the above graphs) should convince you that the first

two or three factors capture almost all the variance of all these quantities

ii. Make a plot of the loadings, the columns of . Make two plots: 1) (: ) ∗  which
expresses the loadings on unit variance shocks 2)  which shows the loadings on shocks

with variance . Together, you should see that in all these cases the main factor has a

“level” pattern, there is a second smaller “slope” factor, a third very small “curvature”

factor. The additional factors are tiny, and don’t have particularly interpretable loadings

— their loadings represent idiosyncratic movements of the individual bonds. (Note: if

there is a “level” shock to yields, what should happen to returns of different maturities?

Yes, this is the same “level” shock even though it has a different shape.)

iii. Make a plot of the fitted value of yields, forwards, and excess returns, using only the first

three principal components, together with the actual values (as presented in class, but

extending to forwards and excess returns). (My plot focuses on 1998 - present for clarity,

but play with the visual to tell a story.) Do all three series work as well as yields? Can

you explain any differences?

iv. Save the level slope and curvature factors in forward rates — you’ll need them later.

(c) Now let’s reproduce and update Fama-Bliss

i. Run the four Fama-Bliss one-year return regressions


()
+1 =  + (

()
 − 

(1)
 ) + 

()
+1

present the coefficients, t statistics, and R2. Is this still working as FB said it would?

(Note: the data are overlapping observations of annual returns. so the  are correlated.

Use a Hansen-Hodrick correction — see the GMM chapter in Asset Pricing. You may use

my olsgmm. Do you have to correct 2?)

ii. We showed in class that the coefficient 2 in 
(2)
+1 = 2 + 2(

(2)
 − 

(1)
 ) + 

(2)
+1 is equal

to one minus the coefficient ∗2 in 
(1)
+1 − 

(1)
 = ∗2 + ∗2(

(2)
 − 

(1)
 ) + 

∗(2)
+1 . Find the

“complementary regressions” to the remaining excess return regressions, run them, and

confirm that the coefficients add up to one.

iii. Verify FB’s long-run interest rate change regressions,


(1)
+−1 − 

(1)
 =  + 

³

()
 − 

(1)


´
+ 

()
+−1
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Does the expectations hypothesis still seem to work in the long run?

(d) Now, we’ll do “What CP should have done” (or what they would have done, if they had

figured this out in time!) The essence of the CP observation is that a single factor dominates

variation over time in expected excess returns. So, let’s write this as a single factor model,

just as you did above with yields, etc.

i. Start by forming an unrestricted forecast of excess returns using all forward rates, i.e.

run

+1 = +  + +1

4× 1 = 4× 1 + (4× 5)(5× 1)

 =
h

(1)
 

(2)
  

(5)


i0
Print and plot the coefficients and 2. You’ll see some differences relative to CP. If

you want to see CP results, stop the data in 2006. (Note: matlab lets you run several

regressions with one command. Thus, if  is  × 4 and  is  × 5, then [ones(T,1) f]\rx
performs all the regressions at once.)

ii. Now we have an unconstrained model,

(+1) = + 

a) Plot these expected returns over time. Do they look like they have a factor structure?

Find the eigenvalue decomposition of the covariance matrix of expected returns, Λ0 =
(( (+1)).

b) Plot  and Λ12, and c) tabulate 
P

 to get a sense of the shapes and names

of the factors, and how many are important. Conclude that there is a single dominant

factor that explains the variation over time of expected excess returns of all maturities,

i.e. that expected excess returns of each maturity move together. Does your dominant

column of  have a tent shape? If not, why not?

iii. Now, let’s keep only the biggest factor. That means we keep the factor (a scalar)

 = (: )0(+1);

and then we model expected returns across maturities as functions of the factor by

∗ = (: )

(check that (: ) corresponds to the largest eigenvalue) just as you would have done

in keeping a single factor model of yields. To see how this idea works, add ∗ below
your plot of the unconstrained estimate (+1) above, to see if they look the same, as

we did for yields

(e) We saw above that you span all the economically interesting movement in yields, forward

rates, and so forth with level, slope and curve factors. Surely we can understand this new

factor x as a linear combination of those, right? To see if this is true, let’s run regressions

using the yield factors,


()
+1 =  +  + (level) +  (slope) +  (curve) + 

()
+1

If, as the first section surely suggests, the information in  is spanned by the remaining

facotrs, then we should see  small and statistically insignificant. Is it?

(Moral of the story: factors that explain nearly all the variance of yields and forward rates

do not necessarily capture all the variance of expected returns. It is a very common practice
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in finance and macro to first reduce a large number of variables to a few common factors,

and then use the common factors to forecast. For example, Jim Stock and Mark Watson,

“Forecasting Using Principal Components from a Large Number of Predictors,” Journal of

the American Statistical Association, 97 (December 2002), 1167—1179 and a large number of

subsequent applied papers. This problem is a counterexample. The linear combination that

is good for forecasting is not well spanned by the linear combinations of yields that account

for variance. It’s almost guaranteed with near unit root series — spreads will be good for

forecasting, but levels will account for variance.

If you’re bored, try it with forward rate factors. You’ll see the factor model does a much

better job. If you’re patient, wait for the solutions. Also if you wonder what happened to 2

try the sample up to 2006. )

3. Let’s modify the basic Vasicek term structure model, and see if we can account for Fama-Bliss

regressions. The basic model has a constant market price of risk. We need to have a time-varying

price of risk. The obvious way to do that is just to make the price of risk depend on the single

factor. So, let’s pursue the obvious extension, in which rather than just  we have a time-varying

 = 1,

+1 −  = ( − ) + +1

log+1 = − − 1
2
(1)

2
2 − (1) +1

(In real life you’d allow a constant too,  = 0 + 1, but I’m simplifying the algebra a bit.)

(a) Find 
(1)
 , 

(2)
 , hence 

(1)
  

(2)
 , in this model. Hint: they are still linear functions (stuff)+ (stuff) !

You have to use  = +
1
2
2, exactly as we did in lecture. Follow the steps as in lecture!

(b) Find 
(2)
+1 = 

(1)
+1 − 

(2)
 + 

(1)
 . Again it’s a function 

(2)
+1 = (stuff) + (stuff) .

(c) Find the predicted value of the Fama-Bliss slope coefficients, i.e. find  in 
(2)
+1 =  +

(
(2)
 − 

(1)
 ). All you’re doing here is substituting out the previous results. You had


(2)
+1 = + 

and

(
(2)
 − 

(1)
 ) = + 

so you’re just getting rid of  on the right hand side in favor of 
(2)
 − 

(1)
 .


(2)
+1 = (mess) +




(
(2)
 − 

(1)
 )

Forget the mess in the constant, we’re only interested in the slope coefficient .

(d) Can we find 1 so that this model captures the Fama-Bliss slope coefficient that  is ap-

proximately 1? (1 describes how much the market price of interest rate risk varies over time.

Note  is pinned down by the slope of the yield curve so you don’t really get to play with it.

It is a number less than one, closer to one the flatter the yield curve is. You may comment

how  closer to one helps the cause of a Fama Bliss slope coefficient of one however.)
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