
Predictability notes

Introduction

1970s view:

1. Expected returns don’t move much over time — stocks are unpredictable.

2. Prices move on news of cashflow (dividend).

3. Capm works pretty well.

4. Beta derives from the covariance of cashflows with market cashflows.

All are dramatically different now.

1. Expected returns move a lot over time — stocks are predictable. (Long run, business

cycle correlation)

2. Prices move on news of discount rate changes.

3. We understand the cross-section with multifactor models.

(a) A larger number of characteristics other than beta are associated with expected

returns

(b) To the extent we understand those patterns, expected returns line up with non-

market betas

4. Betas derive from the covariance of discount rates with market discount rates.

5. Facts are pushing us to the “risk premium” view of the world, as opposed to the

“constant expected return, cashflow” view from the 1970s.

6. These are the facts underlying theoretical modeling.

7. Algebra is trivial. Why we do what we do and what it means are far from trivial.

Old Facts

•1965-1985 view: Expected returns are constant over time.

+1 = +  + +1
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Regression of returns on lagged returns

Annual data 1927-2008

+1 = +  + +1
b t(b) R2 E(R) ((+1))

Stock 0.04 0.33 0.002 11.4 0.77

T bill 0.91 19.5 0.83 4.1 3.12

Excess 0.04 0.39 0.00 7.25 0.91

•Why we look at excess returns.
•These regressions are usually higher frequency — I just present this because it’s easy with
the data we have. Note 2 and (()) typically are even smaller at high frequency.

•Many thousands of signals have been evaluated. This was a revolution in 1970 since prac-
titioners thought it obvious you can time markets.

• Basic “efficient markets” logic, just stems from competition. At high frequency, discounting
seems unlikely to matter.

New View of facts

Facts

• Here are the facts from your readings. The regression got much better with the crash of

2008.

•Table 20.1

•Financial markets and the real economy update:

59



Horizon  
→+ = + 


+ +

+


= + 


+ +

(years) b t(b) R2 b t(b) R2

1 4.0 2.7 0.08 0.07 0.06 0.0001

2 7.9 3.0 0.12 -0.42 -0.22 0.001

3 12.6 3.0 0.20 0.16 0.13 0.0001

5 20.6 2.6 0.22 2.42 1.11 0.02

Table 1. OLS regressions of excess returns (value weighted NYSE - treasury

bill) and real dividend growth on the value weighted NYSE dividend-price ratio.

Sample 1927-2005, annual data. 
→+ denotes the total excess return from

time t to time + . Standard errors use GMM (Hansen-Hodrick) to correct for

heteroskedasticity and serial correlation.

•Barking dog update—this one shows logs, and returns vs. excess returns

Regression   R2(%) ()(%)

+1 = + () + +1 3.39 2.28 5.8 4.9

+1 −

 = + () + +1 3.83 2.61 7.4 5.6

+1 = + () + +1 0.07 0.06 0.0001 0.001

+1 =  + ( − ) + +1 0.097 1.92 4.0 4.0

∆+1 =  + ( − ) + 

+1 0.008 0.18 0.00 0.003

• From “Discount rates”


→+ = + 


+ +

Horizon  b t(b) R2  [(
)]

[(
)]

()

1 year 3.8 (2.6) 0.09 5.46 0.76

5 years 20.6 (3.4) 0.28 29.3 0.62

Table 1. Return forecasting regressions 
→+ =  + 


+ + using the

dividend yield. CRSP value weighted return 1947-2009.

•Motivation: do “low” prices mean / reveal high returns?

Statistical vs. economic significance

•The statistical significance is marginal and 2 doesn’t seem great. But the economic signifi-
cance is huge, and 2 is the wrong statistic. •One way to see the economic size of coefficients:
Look at the one-year coefficient.

1. Fallacy:  = 1 in levels if you don’t think prices adjust.
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2. E(R) = constant predicts  = 0. (A high D/P means a low price. This should mean

dividends will decline in the future so that +1 = (+1 + +1) is not higher.

Thus, high D/P should forecast low dividend growth).

3. The classic fallacy is right and more! This is one measure that the economic size of

the point estimates is large.

• Another measure of economic importance. Expected returns vary through time. A lot —

see D/P graph and multiply by 2-5
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8
Dividend price ratio

• “Predictability” ↔ time-varying expected returns. The time varying expected return is

what really matters, not how much ex-post is “predictable.” We don’t really care what

fraction of ex-post return is predictable ex ante (2). We care about how much +1

varies over time.

•Another measure of economic size: The point estimates mean that ((+1)) = () 

is as large or more than the unconditional equity premium!

-(())() is more interesting than 
2 = 2(())

2()(At any rate, it’s a different

question) The last table has that one (as I see the point more clearly over time. )

•The size of the coefficient again: In logs ˜010. Keep that number in mind.
•Excess returns are forecastable (not shown here, but it’s true). We’re seeing a time-varying
risk premium.

•Coefficients, R2 rise with horizon: Long-horizon 2 is another measure of economic size.

Looking at long horizons is our first “magnifying glass” It lets us see that a very small

predictability (at say a daily horizon) is in fact very economically important. We will see

that momentum, and many other effects correspond to different ways of looking at very old

anomalies to recognize that they are economically bigger than we thought.
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• Two graphs to show long-horizon R2. They emphasize the fundamental fact: High prices,
relative to dividends have reliably led to many years of poor returns. Low prices have led to

high returns.
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Dividend yield (multiplied by 4) and following 7 year return. CRSP VW market index.

1930 1940 1950 1960 1970 1980 1990 2000

−0.5

0

0.5

1

1.5

Actual and forecast 5 year excess returns

1930 1940 1950 1960 1970 1980 1990 2000 2010

0

1

2

3

4

Actual and forecast 10 year excess returns

• The t stat is not that interesting, and does not seem to grow with horizon. We lose

observations as fast as the horizon increases. We’ll look at this issue more carefully later. I

used to think long horizons were only economically but not statistically interesting. I now

think the comments on Asset Pricing p. 395 are wrong, and long horizons are more powerful.

(This is one point of the barking dog paper. )
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•Return forecastability is a robust fact, and does not depend on dividends as a divisor. The
main point is price relative to anything sensible. P/E, B/M (M=P*shares), work just as

well. For example

• I focus on D/P only for simplicity. There are lots of variables that forecast returns. Don’t
take the focus on D/P in the class as any endorsement that other forecasters are unimportant!

In fact, the main area of research focus right now is on extending all this to extra forecasting

variables, but without drowning in a soup of over fit multiple regressions.

Dividend growth

• Look at the tables. Dividend growth is not predictable! The point estimates are the
“wrong” sign!

• P/D “should” forecast a dividend rise. Price high relative to current dividends should

mean that future dividends will be higher.
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Classic view

New fact

Dividend

Price

Time

Now

• As you can see these are related issues — returns are forecastable because dividends are
not. We will link these two forecasts in a minute.

Inefficiency?

•Does this mean markets are “inefficient”? Is this an invitation to “buy low and sell high?”
Not necessarily. Time varying risk premia are possible.

Think like an economist, and think about market equilibrium, not trading opportunities.

Prices must adjust to eliminate trading opportunities. People don’t buy stocks because

they’re scared. Why at some times are they more scared than others?

•Are expected returns higher in good times or in bad times? (Bad, why?)
See dp plot and notice business cycle correlations. Who wanted to buy stocks in Dec

2008, despite good expected returns? (According to the Wall Street Journal, The U of C

endowment sold.) Was this “irrational” fear?

So, business-cycle related time-varying risk premium is certainly possible (though not proved

of course).

•This argument would be much harder to make if predictability came at high frequency, or
were not so clearly associated with bad macroeconomic times.

•A model of time-varying risk premium / fad is the only way to tell the stories apart.

Are the discount factors implicit in market prices connected correctly to marginal rates of

transformation and substitution? This is the only answerable question. Naming residuals is

fun, but gets you nowhere.

• Looking ahead, we need time-varying compensation for risk, or conditional heteroskedas-
ticity of returns.

(

+1) = 


 (


+1+1) = 


 (


+1)(+1)()
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(The literature — i.e., Campbell and I — sort of concluded it had to be () and () ≈
(∆) means we need  to vary over time. But the question is still open. Recently, there

are signs that realized volatility or option-implied volatility does forecast returns, so perhaps

(
) might work again. )

TVER story to present value models.

•We started with return and dividend forecasting regressions, really thinking “does some
ad hoc variable forecast returns?” The variable could have been weather or which football

league won the super bowl (yes, both have been published.)

Our discussion has led to “what causes variation in prices? — cashflows, discount rates, or

bubbles?” Forecasting regressions are really about understanding how the right hand variable

is formed.

•The basic story is “third variable.” News of E(D) or E(R) hits the market. Prices react —
rising on good cashflow news or lower discount rate news. Prices reveal that news to us. On

average, following such news, we see higher returns or dividend growth. What we learn from

the regression is, which is it on average?

•Forecasting regressions do not have “cause” on the right and “effect” on the left. You can’t
get a sunny weekend by changing the weather forecast!

Our regressions are ok because forecast errors are orthogonal to forecasts. OLS did not

assume “cause” on the right and “effect” on the left.

We often do that because we have effect = (cause x) + (other causes), and if (other causes)

are orthogonal to (cause x) we have right hand variables orthogonal to errors. Certainly

(cause x) = (effect) + (other cause) would be wrong, because effect is correlated with other

cause. But that’s not what we’re doing here!

•We need present value models to make this story precise. How much do prices move when
there is news of D or R?

One period "present value models"

•Identities linking returns to prices and dividends will turn out to give us a lot of intuition.
Our objective today: a quantitative tie from “expected returns rise” to price today, in order

to tie empirical literature about expected returns to price variation. This present value

model doesn’t prove anything, but it connects ideas in subtle ways.
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• In a one period model,

+1 =
+1



;(+1) =
(+1)



 =
(+1)

(+1)





=
(+1)

(+1)

You can always discount using the ex-post return.

•Log are nicer so we can use linear time series methods,

+1 = +1 − ;

 −  = ∆+1 − +1

 −  = (∆+1)− (+1)  (2)

This captures the idea PD is high if there is a) News about high future D b) News about

low future R.

• If p-d varies we do not live in an iid world. No fancy statistics needed! If you look at
returns or dividend growth separately, you might well conclude neither is predictable. But

the fact that pd varies means this view is impossible! (“bubbles” introduce a footnote to

this statement, but need an infinite period model, below.) In the 70s, the answer might have

been, yes, and  (∆+1) varies.

•This captures “why dividend growth should be predictable,” and lets us put some equations
to my story about trader information being revealed by prices: Suppose +1 = ̄. Then

prices are formed by

 −  = (∆+1|Trader information)− ̄

But ex post,

∆+1 = (∆+1|Trader information) + +1

+1 = a forecast error, which should be mean zero. Thus,

∆+1 = ̄ + 10× ( − ) + +1

If agents see information which we do not see about dividend growth, we should be able to

predict dividend growth with dividend yields.

• And of course the opposite works if there is a change in expected returns.
• Note forward-looking variables p reveal agent information to us. That’s why they’re so
useful.

• In fact If p-d varies, the return and dividend growth regression coefficients must add up to
one.

+1 = ∆+1 + ( − )
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+1 = ( − ) + +1

∆+1 = ( − ) + +1

 =  + 1

1 =  − 

Also

+1 = +1

•This is all pretty obvious in words. All variation in return here comes from dividend growth
— the only way you get a better return in a one period world is with more dividends. But

it tells us important things.

•Price/dividend variation must reflect expected returns or dividend growth. Which is it? A:
regressions say it’s all R! In this sense return forecasts explain p-d variation . This is another

measure of how “big” return forecastability is.

•Note: the identity holds expost, too, or using any information set. It’s just an identity.
You can always discount cashflows with the asset’s own return.

• So why bother if there is no content? Identities allow us to connect price ideas to more
conventional return ideas. You haven’t really “explained” anything until you “explain” time

varying expected returns. But seeing all sides of the coin via identities helps.

• A variable  that forecasts both expected returns and dividend growth equally will leave
 unchanged. So there is room for extra variables to forecast returns and dividend growth.

•Next Goal: do this with a real present value model.

A better present value identity.

Return identity

•Everything to follow comes from theCampbell-Shiller linearization of the one-period
return,

+1 ≈  (+1 − +1)− ( − ) +∆+1

with all symbols deviations from means.

Intuition: higher returns come from higher prices (higher valuations p-d), lower initial prices,

or higher dividends.
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•Proof

+1 =
+1 ++1



=

µ
+1+1 + 1



¶
+1



+1 = log

µ
1 +

+1

+1

¶
− ( − ) +∆+1

+1 = log
¡
1 + +1−+1

¢− ( − ) +∆+1

+1 ≈ log

µ
1 +





¶
+



(1 + )
[( − )− (− )]− ( − ) +∆+1

Take out the constant, and change symbols to mean deviations from the constant.

+1 =  (+1 − +1)− ( − ) +∆+1

 =


1 + 
=

1

(1 + )
≈ 1

104
≈ 096

The constant can be the mean, but does not have to be the mean. This is important — we

can apply the linearization cross-sectionally to different securities or portfolios which have

different mean d/p.

CS PV Linearization

• The Campbell-Shiller present value identity

 −  = 

∞X
=1

−1 (∆+ − +)

•Derivation. Iterate the return identity forward

+1 =  (+1)−  +∆+1

+1 + +1 = 2+2 −  +∆+1 + ∆+2

X
=1

−1+ =  (+)−  +

X
=1

−1∆+

 =

X
=1

−1∆+ −
X

=1

−1+ +  (+)

 =

∞X
=1

−1∆+ −
∞X
=1

−1+ + lim
→∞

 (+)

“p “Price = dividends, discount, or bubble”

 −  =

∞X
=1

−1 (∆+ − +) + lim
→∞

 (+ − +)
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For now, assume that  −  is bounded, so the last term converges, lim→∞ (+) = 0.
We’ll look at that term more later.

•Again, we see high p/d if expected ∆ is higher,  is lower

•If both ∆ and  are unforecastable, −  is constant. If you look at statistics, it’s easy

to convince yourself that both ∆,  (and + − +) are unforecastable. They can’t be. If

p-d varies at all, something must be forecastable. The fact that d-p varies means that we do

not live in an iid world. (Plus no bubbles, below.)

• (The alternative linearized identity in “explaining the variance of price-dividend ratios”
has some advantages, but this one has taken over.)

•Names. Long run returns and dividend growth are
X

=1

+ ;

X
=1

∆+ = + − 

Our measures are just  weighted,

 ≡
∞X
=1

−1+; ∆ ≡
∞X
=1

−1∆+

so these are a measure of long run returns, dividend growth. I date them  for the beginning

year, since there is no . I actually think the weighted ones are more interesting: Long horizon

returns were interesting because they approximated these weighted long horizon returns, which

tell us about prices.

• CS versus one period models. The iterated equations looks just like 2 period equations;
long run return = long run div growth + final price - initial price.

∞X
=1

−1+ =

∞X
=1

−1∆+ − ( − )

two-period: +1 = ∆+1 − ( − )

Like 2 period, all we’re doing is rearranging the definition of return to give a “present value”

relationship. Then, take expectations (again it also holds ex post)Now we can write

 −  = 

¡
∆

¢−

¡

¢

The present value identity is exactly the same as the one-period identity (2)with long-run

returns and long run dividend growth in place of the one-period return and dividend growth.

Mapping dynamic problems into one-period problems is the central key to making finance

look simple.

•The identity is an identity; it holds ex-post as well as with any information set.

 −  =

∞X
=1

−1 (∆+ − +)

 −  = 

" ∞X
=1

−1 (∆+ − +) | Any information set including  − 

#
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This is no more mysterious than 1 = −1+1+1 hence 1 = 
¡
−1+1+1

¢
— the logic is the

same.

•Thus, the dividend yield reveals to us a slice of the investor’s information set! If you see
 −  you are looking at investor’s expectations of ∆ −  . Now we know why it’s so

good at forecasting. If there is some variation in (+1|Investor information), it’s likely to
get revealed by  − . That’s not a guarantee of course — variation in (+1) could get

offset by variation in  (∆+1) or +2), and we’ll see important practical cases in which

this happens. But at least now you know why modern forecasting expeditions so often use

prices or yields on the right hand side.

• Why the CS identity is such a useful tool. Think of the alternatives





= 

∞X
=1

1

+1+2+3+

+







= 

∞X
=1

+1



+2

+1


+

+−1

+1+2+3+





= 

X Λ+

Λ

+



etc.

a) You can see how CS is a linearization of 2. What’s missing of course are (∆) terms.

I don’t find them very big.

b) Plus: the CS identity lets us make contact with the huge literature on expected returns

rather than say Λ to calculate present values.

c) However, it’s not obvious that it is the only useful way. for example, term structure

models and affine extensions use the Λ approach, not the  approach.

Volatility

Volatility question

• A Related question: why do prices vary so much?
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Shiller 1981 AER

• It seemed like another question, “you guys are looking in the dark. Sure, markets are not
predictable, but prices vary by far more than is remotely believable that present values vary.

If the market goes down 10% in a day, where is the crater into which 10% of US capital

stock disappeared?”

• Related, “bubbles” are all the rage again. “price variation not related to fundamentals.”
• Well, time varying discount rates help, but are they vaguely enough? Could changing
discount rates possibly account for the vast variation in prices? A good lesson in writing

some equations before you give up.

• Bottom line: predictability and volatility are the same.

•We need to do this right. Shiller took out “trends” in prices. The right answer: look at p/d
(or p.e, or b.m or other ratio). Make “prices” stationary by finding a cointegrating vector.

The identity:

 =

X
=1

−1+ −
X

=1

−1∆+ + +
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Run long run regressions

X
=1

−1+ =  + ()  + +

X
=1

−1∆+ =  + 
()

  + +

+ = 
()

  + 

+

Plug regressions in the identity

 = ()  + + − 
()

  − + + 
³

()

  + 

+

´
RESULT The definition of return implies that coefficients and errors must obey

1 ≈ () − 
()

∆ + 
()

 

0 = + − + + 

+

•This is an accounting of price volatility. Multiply both sides by () and

() = (

X
=1

−1+)− (

X
=1

−1∆+) + 
¡
 

+
¢

If dividend yields vary at all, then, they must forecast long-run returns, dividend growth, or a

“rational bubble” of ever higher prices. These are numerators of regression coefficients. We

can interpret  and  as “fractions of dividend yield variation accounted for by discount

rate vs. expected cashflow variation”

• Your first “complementary regression” (Fama). Variation in dp is split between future
dividend growth and returns. Mechanically, p-d must forecast one or the other.

•These really are the “right” coefficients with which to think about return predictability.
Again, predictability regressions are really about what moves the right hand variable, not

how to forecast returns, and it’s long-run dividend or return that moves prices! Long horizons

were not a debating point, they are the “right” way to run the regression in order to learn

about price volatility.

• The units are now 1 / 0. 0.1 seemed a bit vague. Now we’re looking for which  is 1 and

which is 0.

•Which is it? Is return forecastability enough to account for price volatility?
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(Update from Cochrane RFS 1991)

AFA:

Left hand variable:
P

=1 
−1+

P

=1 
−1∆+ +

Direct,  = 15 1.01 -0.11 -0.11

VAR,  = 15 1.05 0.27 0.22

VAR,  =∞ 1.35 0.35 0.00

Dog didn’t bark updates
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Returns

Horizon in years

Regression forecasts of discounted dividend growth
P

=1 
−1∆+ (top) and re-

turns
P

=1 
−1+ (bottom) on the log dividend yield −, as a function of the

horizon . Triangles are direct estimates: I form the weighted long-horizon returns

and run them on dividend yields, e.g. 
³P

=1 
−1∆+  − 

´
. Circles sum

individual estimates: I run dividend growth and return at year +  on the divi-

dend yield at  and then sum up the coefficients, e.g.
P

=1 
−1 (∆+  − ).

The dashed lines are the long-run coefficients implied by the VAR, e.g.
P

=1 
−1−1.

•Summary,
-All variation in the price dividend ratio corresponds to variation in expected returns. None

corresponds to variation in expected dividend growth.

- This finding is 100% different from classic view — 0/100 has become 100/0.

- Magnitude question. Return predictability is “enough” to account for all var(p/d) This is

another measure of economic significance.

- How can expected-return variation possibly generate the huge price variation that we see?

Because it’s so persistent. Small persistent expected return variation = large price variation.

See the identity — many little future  terms add up to a big effect on prices. This is the

heart of many puzzles.

•Warning: This decomposition can be more/less than 100%. The terms are not orthogonal.
It’s not  =  + , () = () + () In this case, the two terms are in fact

perfectly correlated.

 −  =  × ( − )−  × ( − )

• What does 110% / -10% mean? Expected returns are a little too forecastable. When d-p
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rises, expected returns rise “too much”. Hence expected dividend growth must also rise at

the same time, enough to offset the “too large” rise in expected returns.

•Why three ways of computing it in the graph from “The Dog That Didn’t Bark?” A direct
estimate addresses, what if the VAR isn’t right? - Answer: in this case there is no secret

long run structure not seen in VARs. This is not always the case! Long run implications of

short run VARs can be very wrong. See the “Random Walk in GNP.”

• Note: alternative present value formulas. You can use real or nominal. You can separate
interest rates from excess returns:

 =

∞X
=1

−1∆+ −
∞X
=1

−1+

 =

∞X
=1

−1 (∆+ − +)−
∞X
=1

−1 (+ − +)

 =

∞X
=1

−1 (∆+ − +)−
∞X
=1

−1
³


+−1 − +

´
−

∞X
=1

−1
³
+ − 


+−1

´
We can apply this to real or nominal returns, and we can further divide, i.e.  =  + .

We can also find formulas for  −  where  is earnings, book value, etc., by having − 

on the right hand side.

Bubbles

• Bubbles are all the rage again. What is a bubble?
a) A price that went up, went down, and I wish I sold.

b) Seriously, now. “People buy because they think they can sell at a higher price.” We

can model this as a failure of the “transversality condition.” These are “rational (almost)

bubbles.”

Preview: we’ll find that the data are not easily consistent with rational bubbles. Proponents

won’t define bubble, so we’ll have to interpret it as something else — discount rate variation

that is not correctly connected to macroeconomics.

• A simple example. No dividends, constant expected return,

 =
1


+1

This means we expect prices to rise forever.

 = lim
→∞

µ
1


+

¶
•A fun example:

+1 = {, or 1} ,   1
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Adjust  and the probabilities so that +1 = . The result, p.403.

Though prices are expected to grow forever, we see rises and crashes — just what bubbles

advocates think. Once a bubble has crashed, then the world “starts over.”

•Variation in prices without variation in fundamentals.

 () = 

∙
lim
→∞

µ
1


+

¶¸
In our framework,

 −  = 

∞X
=1

−1 (∆+ − +) +

h
lim
→∞

 (+ − +)
i

( − ) = 
£
 − ∆ − 

¤
+ 

h
 −  lim

→∞
 (+ − +)

i
It is possible for prices to vary and yet not forecast returns or dividend growth, if there is a

bubble. Then p-d variation all corresponds to varying expectations of terminal value.

• In fact, we don’t have to be so extreme, or worry about bubbles and whether anyone will
be around to buy stocks in 4 billion years when the sun explodes.

 −  = 

X
=1

−1 (∆+ − +) +

£
 (+ − +)

¤
 ( − ) = 

"
 − 

X
=1

−1 (∆+ − +)

#
+  [( − ) (+ − +)]

Here we ask “is the variance of dividend yields explained by its ability to forecast the first

k years of dividend growth and returns?” If not, this question allows the remainder to be

either “bubble” or even further-out “rational” variation. The distinction between “expected

dividends more years out than we can see” and “bubble” is philosophical anyway.

• In this context the fact that var(p-d) is completely accounted for by the first term means

there are no "rational bubbles.” The first 15 years of return and dividend growth forecasts

completely account for var(p-d)
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• Thus, if we’re going to argue about “bubbles” and “irrational” markets, we are only
talking about the interpretation of time-varying risk premia, not this kind of bubble. The

only question is whether time varying expected returns are connected with marginal rates

of transformation and substitution.

More “rational bubble” discussion:

- This isn’t really right, since if there are bubbles we see we must have an

explosive root in  − , so it’s not stationary and ( − ) doesn’t exist. If

(− +−+) does not tend to zero, − isn’t stationary. The calculation
is right under the null, but not under the alternative. One answer is to run unit

root tests on p-d. They tend towards stationarity, but unit root tests are always

dubious. In the second, finite-horizon decomposition,all variances and covariances

are finite after conditioning on the first observation, so all terms of this are finite

even under the alternative. Still, I would someday like to see the distribution

theory for this bubbles test worked out right, both under null and alternative.

- There are a lot of theoretical objections to “rational bubbles” too

1) It requires E(p-d) , P to grow explosively — this violates statistics, common

sense, economics. There really isn’t a coherent “alternative” to work out.

2) The Transversality condition is a condition. A violation implies instant

arbitrage in complete markets. (Short the asset, live on the dividends for free.)

3) Transversality is also a condition for optimality of a representative infinitely

lived agent.

4) Thus, typically some “irrationality” needed for bubbles models. You cut

off the recursion “I buy to sell in one period; he buys from me to sell in one

period....” At some point the agent forgets to ask who is going to buy the asset

5) But.. OGmodels and some other theories do admit some “bubbles.” Mostly

“bubbles” theories — theories in which people buy assets above “fundamental

value” — are based on some irrationality or overconfidence. (Scheinkman, Hong

and Xiong are some of my favorites)

Final thoughts on volatility

• For a long time, the volatility debate was pointless: “if markets are efficient, why do they
vary so much?” “Well, agents see information we don’t see.” “Oh that’s silly.”

Now we have a test ! If markets move on dividend information we don’t see, we should still

see that prices forecast dividends! And the same for returns. We don’t know what moved

prices on a specific instance, but there is a testable implication of the idea that on average

prices come from dividend information we don’t see.

Volatility tests are not some new beast, they are the same as good old forecasting regressions.

• Result: P-d don’t forecast dividend growth. But they do forecast returns — the world is
consistent with the view of time-varying discount rates. And we reject the bubble view, that

prices move without forecasting anything.
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• In sum, the whole mess is down to one fact: price-dividend variation forecasts long run
returns and not dividend growth.

• Why do so many people still believe in “bubbles” despite this evidence, that high prices
lead to low returns?

A: They don’t regard the expected return variation as “rational.” In their view, var p-d is

accounted for by variation in ER, but people think it comes from constant ER and prices

that will rise forever. They redefine a “bubble” to mean “expected return variation that I

don’t agree with.”

B: They willfully ignore the evidence that price-dividend variation is fully explained by return

forecastability.

•In sum, we all (should) agree that high prices correspond to low returns, not to higher

dividends or to a bubble; the question is whether low returns correspond to an accepted low

risk premium, or whether people don’t know about the low returns? This is the central — only

— fact in the “rational” vs. “irrational” “the crash shows markets are inefficient” “bubble”

etc. debate.

•And, we are back to empty residual-naming unless you have a predictive, rejectable model of
the economic risk premium, or a predictive, rejectable model of when people psychologically

over estimate returns and ignore the inevitability of price collapse.

Unify it all in a simple VAR

Estimates and identity

•Long-run estimates are much easier to calculate as implications from VARs than directly,

i.e. by forming 15-year returns, etc. There is a danger here, that long-run implications of

short-order VARs can be very wrong. If +1 = + +1, 
52 can be very far off. (Daily to

annual). Examples I’ve run in to include the “Random walk in GNP,” and the reconciliation

of monthly and annual term-structure VARs in “Bond Risk Premia.”

It turns out that cointegrated VARs tend to be pretty good at long-run implications, while

regular ARMA processes tend to be far off (Again, that’s my experience in dp/r vars as well

as consumption-income VARs, see “Permanent and Transitory components.”

In any case, we’ll study long-run implications of short-run VARs and then check that direct

estimates are at least not horribly different than the FARs.

•A basic VAR
+1 =  + +1

∆+1 =  + +1

+1 =  + 

+1

(Normally you include ∆ and lags on the right hand side. I have found, and you’ll verify

in a problem set, that you can pretty much set the other coefficients to zero.)
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•Motivation: This allows you to do long run calculations very easily, e.g.



∞X
=1

−1+ =  +  + 2
2 +  =

1

1− 


•Estimates (problem set 2)

 s. d. (diagonal,%)

Estimates and correlation.

̂ ̂ (̂)  ∆ 

 0.108 0.050 19.8 0.67 -0.69

∆ 0.015 0.040 0.67 14.3 0.06

 0.937 0.042 -0.69 0.06 15.1

•Round numbers
 s. d. (diagonal)

Estimates and correlation.

̂ ̂  ∆ 

 0.1 16-20 +big -big

∆ 0 10-14 0

 0.94 15

-Including returns, dividend growth, further lags really don’t change things much — see

problem set.

-Implied dividends from the identity work very much like actual dividends.

-Including other variables does change things, so our results are conditioned on the {−  ∆}
information set. Many other variables help to forecast returns and dividend growth.

•Variance numbers
-The return shock variance is almost the same as the unconditional return variance, 16-20%.

That’s a lot by the way! Expected returns vary much less than the return shock, so the

difference between shock and return variance is minor.

-Dividend growth variance at 14% is surprisingly large. Some of this is an artifact of data

construction. I reinvest dividends paid through the year at the market return until December

to make annual data. This is the right way to do it. If you just save up dividends or reinvest

them at the interest rate, then the identity +1 = (+1 ++1)  does not hold in annual

data! However, it means that dividends inherit half of a year’s return volatility. Actual

dividend payments are not so volatile. If you want to interpret D as actual amounts paid by

firms to investors, you have to use the other definition, but then be aware that the return

identity no longer works.

-The log dividend yield shock volatility at 15% implies that the variance of shocks to expected

returns is about 1.5% per year.

 [(+1 −) +1] = (

 ) = 15%
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Identities in the first - order VAR

•It looks like we have three variables, but we really have two.
- The variables are linearly related

+1 ≈ −+1 +  +∆+1

-Hence the coefficients are errors are linearly related,

 + +1 ≈ −
¡
 + +1

¢
+  +

¡
 + +1

¢
Since this must be true for every value of ,

 = 1− + 

 = − + 

-Thus, one equation is redundant — its coefficient, and error can be derived. Its data can be

inferred.

•Conventionally, we run { } and infer ∆. I like thinking of the system as {∆ } and
inferring . As you’ll see, the ∆ and  shocks have nice economic interpretations, and

they’re basically uncorrelated. However, it’s also a good idea when forecasting returns to

really forecast returns, and not infer return forecasts from something else. The identities are

not exact, and you might end up forecasting the approximation error not the actual return.

(Voice of Hard Experience)

• The estimates (of course) satisfy the identities. 01 = 1− 096× 094 + 0. If you want to
think about how the VAR could have come out, you have to specify numbers that satisfy

the identities. For example, if you want  = 0, you either need  = −01 (dividend growth
is predictable) or  = 104 (d-p is an explosive process, the “rational bubble” case).

• Of course we can ask, “how likely is it we see  = 01  = 0 if the true world is

 = −01  = 0? That’s “dog did not bark.”

Impulse-response function in the simple VAR.

• Let’s plot the responses to dividend yield and dividend growth shocks.
• It makes no sense to shock one of    and leave the others alone. It violates the
identity, and you can’t get a return without price change and/or dividend change. And you

can’t change price, leave dividends alone and not change return.

• In particular, plot  = 1  = 0 and hence  = −, and then  = 1  = 0 and hence

 = 1.

∆ shock:
£
  

¤
=
£
1 1 0

¤
 shock:

£
  

¤
=
£ − 0 1

¤
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You can also define a “return shock” but then you have to say whether it came from a dd

or dp change. You’ll see why mine are a nice choice. Of course shock choice is arbitrary —

pick what gives a nice story.

•Understanding the  response to each shock, especially the -. Mechanically, a rise in dp
with no change in d must mean a collapse in p. Economically, if we raise expected return

without changing dividends, that means prices must collapse; we’re discounting at a higher

rate.

• Responses. There’s no mystery, you can find responses analytically. Our system is

∆+1 = 0×  + +1

+1 = 094×  + 

+1

+1 = 01×  + (

+1 − 


+1)

The plots: ( = 0)
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For intuition, I plot the response of  =
P

=1∆. I also include “price” is computed easily

as follows:

∆ = −(+1 − +1) + ( − ) +∆+1

 = 1− +  ≈ 1− 096 = 004


+1 = +1 − 


+1
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→ ∆+1 = 004 +
³
+1 − 


+1

´
•The vertical line gives the period of the shock. Thus, movements on the vertical line are
the other shocks that accompany the given one. Events to the right of the vertical line are

changes in expectations about the future that come with the shock.

•In macro we often read impulse responses as “effects” of the shock. Technically, they

only are “what revision of expectations of future variables coincides with the shock?” what

(+1 −)+ coincides with +1? In finance, it is useful to read a reverse causality, “what

change in expectations about future returns and cashflows ‘caused’ price to change today?”

Of course, that’s dangerous too — the technique does not establish causality in either di-

rection, and a behaviorist might want to read causality from the price shock today to the

reversion (misunderstood by agents) which will follow. This interpretation is also vulnerable

because agents surely see more than we do, and the interpretation conditions only on the

{ ∆} information set.
• Interpretation:

1. A positive  shock with no change in dividends: (Blue) it slowly reverts, an AR(1).

(Green) reflects no change in current (by assumption) nor future dividends. (Red) It

comes with a big decline in current returns  =  − . With no ∆, return must

come from a big change in  and hence  − . Then it changes +1 rises by 0.1

(= ), with slow  decay. (The slope of  also shows the path of expected returns.)

Since dividends are not forecastable, (random walk), if current dividends don’t change,

then expected future dividends don’t change either.

(a) A  move with no contemporaneous shock to dividends corresponds entirely to a

change in expected returns. We can call it an “expected return” shock. We often

use present value logic and say dp moved because expected returns moved.

(b) A rise in expected returns, with no change in dividends, must give a lower ex-post

return, just as a rise in bond yield must mean a decline in the bond price.

(c) p completely mean reverts. A price move with no contemporaneous move in

dividends mean-reverts completely.

2. A Dividend shock with no change in dp: It is permanent, and has no effect on expected

returns. Thus  must rise exactly as much as d

(a) A dividend shock with no change in dp is a pure cashflow shock.

(b) A price move with same move in dividends (and thus no change in d-p) is per-

manent

•Look at what we’ve done. The VAR allows us to distinguish pure expected-return shocks
and pure cashflow shocks, or more generally to say how much of each occurs at any moment.

The VAR allows you to isolate changes in expected returns, as price changes with no change
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in expected future dividends. The VAR allows you to find a component of price movements

that is completely transitory.

• By contrast, if you just see a return, you don’t know if dividends rose or not. Thus, you
don’t know if it’s permanent or transitory. You have to look at dividends to know which

it is. As you will see in the problem set and asset pricing, the response to a return shock

(univariate) can be completely flat.

• There is nothing wrong with plotting responses to correlated shocks. It’s nice that they
are nearly uncorrelated but this isn’t important to impulse-response functions. You need un-

correlated shocks for forecast error variance decompositions, but not for response functions.

It turns out that  and  are basically uncorrelated, so we’re also plotting responses to

uncorrelated shocks, but that is a minor convenience not an assumption.

• The current dividend is the Beveridge-Nelson trend or random walk component of price.

It’s the unforecastability of dividends that makes this so nice. If dividends were forecastable

we could construct “expected return” and “expected cashflow” shocks, but they would not

be so cleanly related to shocks with current zero responses.

• Above, I plotted the pure case  = 0, and no lags. Does this make a difference? is this a

good approximation to the data? Here is the response with an estimated .
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Figure 3:

As you can see, in the point estimate p-d is almost entirely an expected return shock.

Actually returns are a little “too” predictable, requiring a little bit of dividend growth
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predictability in the “wrong” direction.

•Agenda. More variables? You can see that the cointegrating vector  −  is central in

the ability to make long-term forecasts. This suggests that in particular more cointegrating

vectors will help. Consumption/income work for income, D/P works for returns, can we

unite the two? Lettau and Ludvigson’s cay is a start. By contrast, I suspect that the large

zoo of variables that help to forecast one-period returns have very low  and hence don’t

change the long-run picture much.

Shock correlations

• The return and dp shocks have strong negative correlation. I used to think this was weird
when reading Campbell papers that focus on this correlation. Why not zero? In fact this

strong negative correlation makes a lot of sense and is an important part of the worldview

painted by the VAR.

•Remember the identity
+1 ≈ −+1 +  +∆+1

→  = − + 

The three shocks cannot be uncorrelated. There is nothing deep here, it’s just the definition

of return. For example, “correlation of return and dividend yield shocks” sounds forbidding.

But if we are to get a good return, either prices have to rise, or dividends have to rise. You

can’t get a return without a change in either prices or dividends!

• The world we see:  and  shocks are essentially uncorrelated.  = −+  therefore

means that  and  must have a big negative correlation.

( ) = −2() + ( )

Thus, I like to digest the vital fact that return shocks are strongly negatively correlated with

dividend yield shocks as a consequence of the fact that dividend growth and dividend yield

shocks are essentially uncorrelated. As we saw above,  and  are naturally “expected

return” and “expected dividend growth” shocks. So we live (for once) in a nice world, one

in which those “fudamental” shocks are nearly uncorrelated.

Given that fact the strong negative correlation of  and  shocks is natural. It’s just

like the strong negative correlation of bond returns and bond yields. Expected returns rise,

prices plummet (higher discount rates). This means the ex-post return plummets. These

events are uncorrelated with dividend shocks.

•Other worlds. The only way for   to be uncorrelated is if   are correlated, i.e.
0 = −2() + ( )

( ) = 2()

How could return and price-divided ratio shocks not be correlated? If lower expected return

shocks (higher dp) happened to come at the same time as higher dividend growth shocks,

(contemporaneously), the two effects would offset. But that’s not what we see.
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In the end, it’s much prettier to have a world with uncorrelated dividend-growth and expected

return shocks — with consequent negative correlation between dp and r VAR shocks, than

the alternative.

•Similarly, the return and dividend growth shocks are strongly positively correlated. How
could a big dividend growth not give you a good return? How could ( ) = 0? It could

only happen if expected returns rose, sending the price down at the same time, just enough

to offset the increased dividend.

 = − + 

( ) = − ¡ ¢+ 2()

It turns out that’s not the world we live in either.

•The VAR makes clear that we live in a two-shock world. Most models have one shock.

For example, the Campbell-Cochrane habit model has one shock, consumption growth.

Lower consumption growth raises expected returns. Thus, ( ) = 1 in that model.

( ) = 0 in the real world. A great paper topic is to extend that model to a two-shock

world. There’s a lot of important economics here. Risk premiums are generated by covari-

ances. If  is uncorrelated with , then the dividend claim is risk free! ( ) = 0

means that dividend growth is correlated with returns, giving a standard cashflow-capm

reason for a premium, but it means that dividend growth is uncorrelated with changes in ex-

pected returns. Thus, it is uncorrelated with the Merton-state variables that are also priced.

Is this a key to the equity premium? ...

•In sum, as a result of the coefficient and shock identities, it’s easy to remember what our
world looks like with the two-variable   in which you only have to remember one number,

∆+1 = 0×  + +1

+1 = 094×  + 

+1; (

 ) = 0.

Then, the more complex return behavior,  and correlated shocks, follows from identities.

+1 =  ×  + +1

 = 1− +  = 1− 094× 096 = 01
+1 = −+1 + +1

Interesting alternative worlds,  = −01 (70s efficient markets),  = 104 (rational bubbles),
( ) = −1 (one-shock macro models such as Campbell-Cochrane) are then also easy
to specify

State-space models and “structural” interpretation

•I used to be in love with these. After John Heaton has said about 15 times “I don’t see
what you’re doing. The Wold representation is all there is,” the lesson has finally sunk in

— I don’t think there actually is much deep in these “structural models.” However, they’re

popular, in part from my own writing in Asset Pricing, so it’s sensible to explain the idea

and its limitations.
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On the other hand, “state space” models are useful to constrain the parameters of VARs,

and may give “smoothness priors” that let us incorporate the information in lags of return

and dividend growth without exploding right hand variables (Koijen and van Binsbergen;

Kelley)

•Here’s the idea. Suppose expected returns vary slowly, and dividend growth is not pre-
dictable.

 = (= 094)−1 +  (3)

+1 =  + +1

∆+1 = (0+) +1

We also specify a correlation structure for the underlying  shocks.

Look at the pretty model.  captures slow variation over time in expected returns. Actual

returns add noise.

Agents see  =expected returns, and they see the structural shocks 
  , but we don’t.

 is a “latent variable.” ( is an ARMA(1,1) in its univariate representation, but that

univariate representation does not reveal the shocks to the system — you can’t recover  or

  

 just from a time series of {}). Figure 4 illustrates. Notice how small expected return

variation is compared to actual return variation — you’d have a hard time seeing the red line

by filtering (taking moving averages) of returns! That’s a big key in how observing dividend

yields is so important.
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Figure 4: Actual and expected return, and dividend growth. Simulation.

•The question for us, is, what observable implications follow from this “structural” view of

the world? We have a disadvantage — we can’t see  and the shocks. But we can see dividend

yields and these reveal to us a slice of investor’s information.
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Derive p-d from the present value formula:

 = 

X
=1

−1(+ −∆+) =


1− 

Here is the most important point. p-d reveals x, the expected return, that was previously

only visible to agents.

•(This model for expected returns is common— it’s the basis of all term structure models

with +1 = ++1. Then  = (+1) reveals the state variable  as the risk free rate.)

•Substituting, the observable dividend yield follows

+1 =  + 

+1; 


+1 = +1(1− )

The structural expected-return shock  now is revealed to us as a regression error of dividend

yield on lagged dividend yield, and the structural expected-return parameter  is revealed

to us as the dividend-yield autocorrelation 

•Note 1(1 − ) = 10. A small persistent ER error implies large price errors. This is a

deep point. Small but very persistent expected return variation can add up to large price

variation.

•Now, what’s the observable process for returns? Substitute out ,

+1 = (1− ) ( − ) + +1

So we predict a regression coefficient of returns on dividend yields

(1− ) = (1− 096× 094) ≈ 01!

Hey, that’s the right number! We also can now see the “structural” return forecast error +1

•Even easier, the observable dividend growth process is

∆+1 = 0× ( − ) + +1

•We have just derived the “reduced form regressions we expect to see given the above

“structural” view of the world. The “structural” model (3) implies the “reduced form” or

“observable” VAR ⎡⎣ +1
∆+1
+1

⎤⎦ =
⎡⎣ (1− )

0



⎤⎦  +
⎡⎣ +1

+1


+1

⎤⎦
and this is just about what we see!

•For example, here is a world we don’t see: We could write down the “structural” model

+1 = +1

∆+1 = +1

88



then,

 −  = 

X
=1

−1(+ −∆+) = 0! (i.e. constant)

We know this isn’t true, since d-p varies. We can’t have both returns and dividend growth

iid. If dp moves it must forecast something.

•Here is another structural world we don’t see: The 70’s view that expected dividend growth
moves

+1 = +1

∆+1 =  + +1

In exactly parallel fashion this model predicts⎡⎣ +1
∆+1
+1

⎤⎦ =
⎡⎣ 0

−(1− )



⎤⎦  +
⎡⎣ +1

+1


+1

⎤⎦
•Furthermore, we now can interpret the VAR shocks as shocks to underlying, trader-information,
expected returns and dividend growth.

d-p shocks are shocks to long-run expected returns



 = ( −−1)

X
=1

−1+ =
1

1− 
+1

given the AR(1) structure, they are proportional to shocks to one-period expected returns.

 is a “cashflow” shock.  = 0→ also an “expected future cashflow” shock,

( −−1)
∞X
=1

−1∆+ = 

• Now, the fact that VAR shocks   are uncorrelated is a result that comes from “struc-
tural” shocks to expected returns and dividend growth are uncorrelated. It didn’t have to

come out that way!

•In the return decomposition,
+1 = +1 − 


+1

This is the same in the AR(1) as the Campbell return decomposition,

( −−1)  = ( −−1)

"
∆ +

∞X
=1

−1 (∆+ − +)

#

Again, “all price-dividend variation is due to expected returns” and “return variation is half

dividend news and half expected return news” are consistent. Expected future dividends

have nothing to do with current returns.
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What’s wrong

•What’s wrong with this? Well, when you think about it, we really have not gotten any-
where away from the Wold representation; the return forecasts “expected returns” “expected

dividend growth” and so forth are exactly what you recover from the VAR of observables.

 merely gives a name to  × ( − ). It’s convenient sometimes to use a symbol  in

place of  × ( − ), but that’s all we do really.

In fact, agents don’t just see ; surely real-world expected returns and dividend growth

are much more complex, and the  ∆ VAR we see is vastly “conditioned down.” So

pretending  is an AR(1) and “structural” really doesn’t make much sense.

•The “revelation” of structural shocks in my example does not generalize. For example, life
is not so simple if both dividends and returns contain predictable components.

 = −1 + 

 = −1 + 



+1 =  + +1

∆+1 =  + +1

Then

 =


1− 
− 

1− 

There is no perfect revelation any more. We can’t back  and  out separately. {∆ }
is no longer a first-order VAR, either. Lagged dividend growth can now help d-p to forecast,

but in a structured way. (Koijin and Van Binsbergen (2009) do a sophisticated estimation

of this case. Chaves (2009) points out you still can recover structural shocks if  = . )

•More general. What is undoubtedly true about the world is that agents’ expected returns
 and expected dividend growth  follow a more complex process than an AR(1), and it’s

codetermined with a long vector of variables,  =
£
 

¤
some observable by us  and

some not observed by us  . Agents’ information is Ω =
£
  

¤0
and if we want to

model its evolution with linear time series it’s something like

()

⎡⎣ 



⎤⎦ = 

+1 =  + +1

∆+1 =  + +1

Yes, dividend yields are still generated by the identity,

 = 
¡
 −∆ |Ω

¢
Now, we can well ask of this structure, what is the implied Wold representation for observ-
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ables? What process do

()

⎡⎢⎢⎣

∆
 − 


⎤⎥⎥⎦ = 

where  are regression errors? We can even ask for reduced representations (less than full

Wold, which requires infinite lags). What first-order VAR does the structure predict? But

again, the inverse mapping doesn’t work. There are many “structures” corresponding to

the “reduced form.” Without assumptions, you can’t tell them apart — you can’t learn more

than the Wold representation.

For example, we have already seen that the simple AR(1) expected-return “structure” fits

the {∆ } VAR, but the whole point of the cay investigation is that this structure, with
more complex expected return and dividend growth, also “conditions down” to the same

{∆ } VAR.
•Con: To recover “structure” we have to add identification assumptions. My above example
already did that, by assuming an AR(1) for expected returns and no variation in expected

dividend growth. That would be fine if the identification assumptions came from economics,

but it’s not clear to me that adding statistical identification assumptions — orders of lag

polynomials, AR structure, shock covariance structure — has any basis in economics. Really,

the most we can hope to know from linear time series methods is the Wold representation.

You just can’t get around this fact.

•Pro: it’s clear from these examples that the “reduced forms” imply VAR structures with

lags of , ∆ that matter. However, they don’t come in with arbitrary coefficients. Smooth

AR structures such as my   example above can generate “smoothness” restrictions on the

VAR and help to see the extra forecast power of many lags without adding too many right

hand variables.

Rise of coefficients, R2 with horizon

•Long horizons are not a separate phenomenon. Long horizons are a mechanical result of a
persistent forecasting variable

+1 + +2 =
¡
 + +1

¢
+
¡
+1 + +2

¢
=  + 

³
 + 


+1

´
+ +1 + +2

= (1 + ) +
³



+1 + +1 + +2

´
X

=1

+ = (1 + + 2 + + −1) [ − ] + 

Coefficients rise over horizon if  is large and near one.

• 2 rise too in this model. It’s a good exercise but too much algebra for lecture. Intuitively,
the expected part ×  builds linearly with horizon, so 

2(× ) builds with the square
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of horizon. The unexpected part  + +1 +  is a sum of iid random variables, so ()

builds linearly with horizon. Thus the ratio builds with horizon. Temperature in Chicago

is a good example. If you forecast temperature one day ahead based only on seasonal mean

reversion, you explain next to nothing of daily variance, but a lot of seasonal variation.

Equivalently, long-horizon forecasts ↔ a low p/d predicts a high return for many periods in

the future

+2 = 2 + +2

+1 + +2 = ( + 2) + +1 + +2

Picture:

D/P

Return

Add these up to get large long-horizon return forecast

High D/P today forecasts 
high returns for many future days

High D/P today is persistent, 
so return forecast will be high in the future

Forecasts

Why D/P forecasts long horizon returns

•In sum, long horizons are not a separate phenomenon either. They are a way to make
something we knew all long (significant t, low R2) seem much more economically important

(large 2). We will see “new telescopes” at work in many other areas, for example how

portfolio formation lets us make the tiny serial correlation of returns economically significant.

• Do long horizons improve statistics? I used to think not — MLE is the one-period VAR,
this is just intuition. The “dog that did not bark” argues otherwise, but mainly because at

long horizons it’s easier to build in the prior view   1.

Volatility tests in the VAR

• Recall
1 =  −  

We interpreted   

 as “fraction of d-p variance accounted for by cashflow/expected return

variation” (I standardized here on d-p rather than p-d as the right hand variable)
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• In the VAR
 =

∞X
=1

−1−1 =


1− 

Thus, the volatility decomposition is simply



1− 
− 

1− 
=  −  = 1

You can get here much more quickly just from the identity

 = 1− + 

1 =


1− 
− 

1− 

But regression coefficients directly lose the () interpretation which addresses Shiller,

and the “forecasting long run return” implication.

• Simplified numbers

 =
01

1− 094× 096 = 1
 = 0

Again, the return coefficient is just enough. The dividend coefficient is zero. No bubbles

needed

•Real numbers (from above estimate)

 =
0097

1− 096× 0941 = 10037

 =
0008

1− 0960941 = 00083

•Intuition

1. The graph (from dog that didn’t bark) above shows that first order VAR with dp is

pretty good at capturing direct estimates of long-run pd forecasts.

2. The long-run return coefficient ≈ 1. The long-run dividend coefficient ≈ 0. These

“should be” 0 / 1. Thus in this way we see another 0 - 100% that changed to 100% -

0% view of the world.

3. These long run coefficients are the right way to think of return predictability. Expected

long-run return = 1.0 × d/p. Thus 1 , not 4.7 (+1 on ) or 0.1 (+1 on − )

is is what I like to keep in my head. Then, 0.1 results from the autocorrelation of

dividend yields. I think of it as

 =  (1− )
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not

 =


1− 


If, for example, dividend yields are really much more persistent,  = 1, I would expect

that  = 004. That way the “100% variation due to dividend yields” would be

preserved.

Campbell and Shiller variance decompositions.

• Campbell variance decomposition Campbell and Shiller use a different variance decompo-
sition. They take variance of both sides of the present value identity, which means they have

an ugly covariance term to deal with. To do the dividend yield variance decomposition, they

use

 = 

 −∆

 () = 
¡





¢
+ 

¡
∆

¢− 2(

  ∆ )

They use a VAR to calculate the expectations.

•Campbell in the Simple VAR. In our simple VAR, we can do these analytically



 =



1− 
 =  

∆ =


1− 
 =  

As you can see, the covariance term is going to be important — the two terms are perfectly

correlated with each other! Thus, the decomposition is

() =
2

(1− )
2
() +

2

(1− )
2
()− 2 

(1− )
2
()

Canceling the (), we obtain a 3-way variance decomposition, which I can write.

1 =
2

(1− )
2
+

2

(1− )
2
− 2 

(1− )
2

•Campbell identity is also a rewriting of the VAR coefficient identity. The coefficient identity
is

1−  =  − 

I rewrote this as

1 =


1− 
− 

1− 
=  −  

and multiplying both sides by () gave it a “variance decomposition” interpretation.

Campbell’s identity is obviously the same thing, but he first squares both sides

1 =
¡

¢2
+
¡

¢2 − 2 ¡ ¢ ¡ ¢ 
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and now multiplies by ().

•Numbers and comparison. Using typical numbers  = 11 

 = 01, we obtain

1 = 112 + 012 − 2× 01× 11
= 121 + 001− 022

so in the Cambpell decomposition we would say that “the variance of dividend yields is 121%

explained by the variance of expected returns, 1% from the variance of expected dividend

growth, and -22% from the covariance between the two.” By contrast, my variance-covariance

decomposition

1 = 11− 01
would say it’s “110% expected returns and -10% expected dividend growth.” Neither is

“right” or “wrong.” They both say the same thing. Take your pick which you like.

•Larger VARs My variance-covariance decomposition is independent of a specific VAR —

it only relates var(d-p) to the ability of d-p to forecast subsequent returns. (This will be

estimated differently in sample by larger VARs, but the statistical concept is independent of

which VAR you use). The variance-variance decomposition does change based on information

set; it expresses (if you like that) or is affected by (if you don’t) the fact that with larger

information sets the variance of expected returns will grow. You can take the terms of

() = 

Ã


∞X
=1

−1+

!
+

Ã


∞X
=1

−1∆+

!
−2

Ã


∞X
=1

−1+ 

∞X
=1

−1∆+

!

in bigger VARs. Since the left side is the same, all the terms of the right side increase,

including the troublesome covariance term.

For this reason, I am more attracted to making this kind of calculation with impulse-response

functions, as shown below in the context of cay.

CS return decomposition

•We can decompose the sources of return variation much as we decomposed the source of
price-dividend variation. Start with the definition.

 =

∞X
=1

−1 (∆+ − +)

0 = (+1 −)

∞X
=1

−1 (∆+ − +)

(+1 −) +1 = (+1 −)

"
∆+1 +

∞X
=1

 (∆+1+ − +1+)

#
(4)

Return variation comes from 1) Current dividends 2) Expected future dividends 3) Expected

future returns.
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•The latter two effects, of course, come from their effect on future price-dividend ratios.

+1 = −+1 +  +∆+1

(+1 −) +1 = (+1 −) [∆+1 − +1]

•The negative sign. An increase in expected return in the future means a lower ex-post return
today. Most people get this wrong; they think of an increase in expected returns as “good

news.” They understand that an increase in bond yields means a lower price, and hence a

bad return today, but they can’t apply this lesson to stocks. (This is the same effect we saw

in the impulse response function. A rise in expected returns lowered today’s return)

• Chaves return variance decomposition. We can obtain a variance decomposition in the
same way as we did for d-p (Denis Chaves had this cool idea. As far as I know nobody has

done this in print yet.). Let

∆+1 ≡ +1 −,

then, multiply both sides of the return identity by ∆+1+1 and take variances,

 [∆+1 (+1)] =  [∆+1 (+1) ∆+1 (∆+1)]

+

"
∆+1 (+1) ∆+1

Ã ∞X
=1

∆+1+

!#

−
"
∆+1 (+1) ∆+1

Ã ∞X
=1

+1+

!#

As with prices, this says “returns can vary only if there are shocks to current dividends, or

if returns forecast changes in future dividends and returns (i.e. changes in dividend yields.”

•These statistics are easy to calculate in a VAR. Results:
Current Future Future

Dividends Dividends Returns

49.03 -7.81 54.80

About 50% from current dividends, 50 % from future returns, 0% from future dividends.

• People get confused. Is variation “All” expected returns or “50% returns 50% dividends?”
Price-dividend ratios can move all on expected return news, while returns move on 50/50,

because returns move on current dividend news as well. Thus, “100/0” for prices and “50/50”

for returns are the same thing. It would be better to report results that separate the effect

of current and future dividends, as I have.

We didn’t have to get so complicated. Once you know that dividend growth is roughly iid

with 14% standard deviation, you know the first term here will be big.

• Similarly
∆ = −+1 +  +∆+1

so the variance of price changes and the variance of price shocks is each about half due to

dividend growth, even if  depends only on expected returns.
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If you want to use language that keeps things straight, , say valuation depends on expected

returns. This means dp.

•This decomposition depends on particular VAR we use. The last one was “conditioned

down” on p-d as the only information set.

Calculation. I used the simple VAR with only −  as a state variable,

+1 =  + 

+1

+1 =  + +1

∆+1 =  + 

+1

In the context of this VAR, (??) is the identity

+1 = +1 − 

+1

The second substitution is so trivial it barely stands up on its own.

 −  =  −∆



 = ( −−1) 


 − ( −−1)∆

=


1− 


 −



1− 




which is just the coefficient identity, but with a new intepretation. So, the return-

innovation identity (4) reads

 =  +


1− 


 −



1− 




Now, do the same variance decomposition trick we did for prices,

( ) = (  

 ) +



1− 
(  


 )−



1− 


 (  


 )

The table just computes these three terms.

• Campbell Return Decomposition. For returns, Campbell, Campbell and Ammer express
unexpected return variance in a different way, just by taking variance of both sides. Now we

have three terms on the right, which potentially lead to two ugly covariance terms. Thus,

customarily, they collapse the two dividend terms together,

 [∆+1+1] = 

(
∆+1

" ∞X
=0

∆+1+

#)
+ 

"
∆+1

∞X
=1

+1+

#
− 2(·)
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Mean Reversion

•Are stocks “Safer in the long run”? (Jeremy Siegel, http://www.jeremysiegel.com/) The
fact of mean reversion certainly suggests it, no? “Temporary price variation” means “stocks

are safer if you can wait”

• This is a good place to emphasize Be very careful about information sets. “Is there mean
reversion in stocks?” “Are stocks safer in the long run?” “Can you predict stock returns?”

All are very different depending on which information set you have in mind. Many authors

get this completely wrong and confuse which information set they’re talking about. For

example, “dividends are not predictable” only refers to the { ∆} information set. Here,
we compare the { ∆} information set with the {} information set, and get very
different answers. The larger one conditions down to the smaller one. On a positive note,

it’s important to check that your view of the world conditions down appropriately. Looking

forward, as we add new variables , we want those results to condition down to what we’ve

learned about { ∆}

Univariate mean reversion and long run variances.

•Definition“Safer in the long run” means, is

(+1 + +2 + +)   × (+1)?

• Big picture: “Safer in the long run” (a variance question) is the same thing as “univari-
ate mean reversion” or “univariate predictability” (an impulse-response or autocorrelation

question)

• Reminder. You can always characterize time series equivalently by impulse-response (MA
representation), forecasts from their past (AR representation), autocorrleation function, and

variances (spectral density, really). Each view is connected to the others.

• “Safety” and autocorrelations:
 = 1−1 + 

(+1 + +2) = 2× () + 2× ( −1) = 2× (1 + 1)× ()

(+1 + +2)

2()
= 1 + 1

Thus positive autocorrelation corresponds to variances for long run returns that grow faster

than we think, and negative autocorrelation corresponds to long run variances that grow

slower than we think.

Of course in regressions we found

+1 = (very small number)  + +1

This suggests essentially no mean reversion at all / no change in long vs. short run variances.

. But maybe there’s more structure than an AR(1)?
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Figure 5: Response to return autoregression, +1 = +  + +1

•Long run autocorrelations and safety. More generally, let  = ( −). Then,

( + +1 + +2 + + +) = () + 2( − 1)( −1) + 2( −)

( + +1 + +2 + + +)

 ()
=

"
X

=−

kk




#

If returns are uncorrelated, we get the standard result, variance grows with horizon. Auto-

correlation changes that; variances are proportionally lower if there is a long string of small

negative autocorrelations (“mean-reversion” ) and larger if there is a long string of small

positive autocorrelations (“momentum”) An interesting number is the sum of autocorrela-

tions.

lim
→∞

( + +1 + +2 + + +)

 ()
=

∞X
=−∞

 = (0)

•Connection to moving average representation. In moving average form

 = ()

Recall that () is the univariate impulse-response function, and
P

=1  gives the response

of cumulative returns
P

=1 + to a shock . Then, a long string of small negative 
would correspond to “mean reversion,” the end of the impulse response function (1) =P∞

=0  would be substantially below the impact value 0 = 1. In this context, the variance

of long run returns is

 + +1 + + + =

 +1−1 +

+1 +1 +2−1 +

+2 +1+1 +2 +3−1 +

1


( + +1 + + +)→ (1)2()
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Thus, “safer in the long run” variance questions are the same thing as the impulse-response

question whether cumulative returns end up above or below the impact multiplier.

•Tests.These equalities suggest a direct ways to measure the long-run multiplier question:
look at long-run variances directly.

This is called the “variance ratio” test for long-run univariate mean reversion. These long-

run autocorrelations (lots of small () for large ) are often captured poorly by low-order

ARMA models. Those models are fit to capture one step ahead forecast error, not long-run

properties of the series. (See “radom walk in GNP.”)

- Fama and French long horizon regressions (+1+ +2+ + on + −1+ −2+ ) are

very similar, and another way to detect a string of long-horizon autocorrelations. See Asset

Pricing

-Sharpe ratios. A fun way to scale the question. If returns are uncorrelated over time, i.e. no

horizon effects, then mean and variance scale with horizons; standard deviation and Sharpe

ratio scale with square root of horizon. This is a nice way to get directly at the Jeremy Siegel

question, “are stocks safer for long-run investors” is to present the annualized Sharpe ratio

not just the annualized volatility as above.

→+2 = +1 + +2

(→+2) = 2()

2(→+2) = 22()

(→+2) =
√
2()

(→+2)

(→+2)
=
√
2
()

()

•Facts, Table 20.5, 20.6, 20.7 present these long-run estimates, which you now understand
are all getting at the same thing.
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Logs: the formulas work better. Levels: One-period mean-variance investors care about

arithmetic, not geometric returns. Surprisingly, there is not much consistent evidence that

stocks are “safer in the long run.” If they are, the magnitude of such stabilization is much

lower than you might have thought given the multivariate evidence.

•We really should be looking atP +, i.e. () not (1). Nobody has really investigated

this question.

Solving a puzzle

• The Puzzle. How is it possible for d/p to forecast returns, but returns are not “safer in the
long run?” How is it possible that we find a completely mean-reverting component to prices

in response to a dp shock, but no mean reversion here? How is it possible that a rise in price

relative to dividend is followed by low returns, but large past returns are not followed by low

returns?

Conversely, perhaps we should be expecting “momentum.” If we pass into a generation-long

period of high expected returns, surely after a few years we should see an average of high

actual returns that would tell us we’re in a high expected-return regime. How could that

fail to work?
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Intuition 1: a high return is half likely to be a dp shock, which mean reverts, but also half

likely to be a dividend growth shock which does not revert.

Intuition 2: It’s not quite that easy. Univariate shocks (a return not predicted from past

returns) are not the sum of multivariate shocks (a return not predicted by past dp, ∆ and

past returns). This intuition would predict dampened mean-reversion, but would not let you

see the correct possibility that the VAR is consistent with a pure random walk in returns, or

even momentum behavior in the univariate representation. The other half of the intuition

is, if you see a high return you don’t know if it was expected or unexpected by dp.

We need to put equations to this intuition.

•It’s possible to have multivariate predictability and a univariate iid return. A weather fore-

casting example: Suppose temperature is uncorrelated over time, but Minneapolis gets our

temperature a day before us. Thus, you can’t forecast temperature by looking at Chicago’s

temperature history (returns) but you can perfectly forecast temperature in Chicago by look-

ing at temperature in Minneapolis. Weather can be uncorrelated over time, yet forecastable.

In equations: Is it possible for   0 but { = 0}? A: Yes. Here is an example:∙
+1
+1

¸
=

∙
0 1

0 0

¸ ∙



¸
+

∙
0



+1

¸


This is just my weather forecasting story. It’s clear but not our VAR.

•Information sets. This is about information sets. (·| −1) is not the same as(·|  −1 −1 
We are asking for the univariate representation of returns rather than the response to return

shocks in a multivariate Wold representation.

•Technique: Given a multivariate view∙
+1
+1

¸
=

∙
 
 

¸ ∙



¸
+

∙




¸
Find the implied univariate Wold representation; predict what the VAR implies for

+1 =

∞X
=0

− + +1

 = ()

Put another way, suppose you simulate a long data series from the VAR, and then run the

regression of returns on past returns. What would you get? You can always do this by

simulation, but you can also do it analytically. This is not as easy as it looks, because  is

not a linear combination of  and .

Univariate return process implied by our VAR

•Univariate question. Is this true of our VAR? Finding the univariate Wold representa-
tion implied by a VAR is in general a pain, because the univariate shocks are not linear
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combinations of the multivariate shocks. (The multivariate shocks are not in the space

+1 = +1− 0− 1−1for some {}.) Asset pricing shows how to do it analytically by
factoring spectral density matrices. It’s easy to do by simulation, of course: simulate a long

history from the VAR and run a long autoregression.

The restricted VAR can be analyzed with pretty simple methods, and it is very close to the

case that the VAR implies a pure random walk in prices/returns unpredictable given their

own past. This is where we’re going, and our point was to get the intuition behind this

puzzle anyway.

•VAR reminder Our simplified VAR, as a reminder:⎡⎣ +1
∆+1
+1

⎤⎦ =

⎡⎣ 
0



⎤⎦  +
⎡⎣ +1

+1


+1

⎤⎦ 
 = 1− 

+1 = −+1 + +1; (
 ) ≈ 0

•In this limited VAR, the univariate return process follows an ARMA(1,1). Guess that the
AR root is also . Then

(1− )+1 = (1− ) + +1 −  = 

 + +1 − 

Since the right hand side is also an MA(1) (has autocorrelations of order 0, 1 and no more),

we know that the univariate return process must be of the form

(1− )+1 = (1− )+1

We can find  and (if need be) 2 by matching the first two autocorrelations. Take the

variance and autocovariance of both sides of this,

+1 −  + 

 = +1 − 

Our baseline VAR has a strong correlation ( )  0, and ( ) ≈ 0Thus, it’s
easier to parameterize this in terms of dp and d shocks,³

−+1 + +1

´
− 

³
− + 

´
+ (1− )


 = +1 − 

+1 − 

+1 + 


 −  = +1 − 

•Special case for lecture:  = , ( ) = 0

+1 − 

+1 + 


 −  = +1 − 

(1 + 2)(2 + 2) = (1 + 2)2

− ¡2 + 2
¢
= −2
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 =  = 

The return is iid in its uivariate representation, exactly!

•It is not true that  = 

 −  . or +1 = +1 − 


+1. The  goes in a different place.

There’s a “noninvertible” between univariate and multivariate shocks.

•Admire Stop and admire this result! There is a completely mean-reverting component to
prices; a price move with no dividend change is completely transitory. Yet in the univariate

representation, when we integrate over dividends as if we could not see them, returns are

completely unforecastable, and changes in wealth are completely permanent! Multivariate

forecasts typically show much more structure than univariate ones.

•More general result, still keeping ( ) = 0: The autocorrelations are¡
1 + 2

¢
2 +

¡
1 + 2

¢
2 = (1 + 2)2

2 + 2 = 2

we don’t really care about 2, so we can focus on ,

(1 + 2)2 +
¡
1 + 2

¢
2

2 + 2
=
1 + 2


(5)

You can see right away that we’re going to get a large , midway between  = 096 and

 = 094, thus putting us squarely in the extreme trouble range for ARMA(1,1) that the

roots nearly cancel.

Unfortunately, at this point you have to find  and 2 by solving a quadratic, which I leave

to a problem set. (We’ll look at some very intuition-producing special cases in a minute.)

Well, this is better than factoring a spectral density matrix! Figure 6 gives the answer for

our baseline VAR,  = 09510, very slightly larger than  = 094.

•As you can see, there is very little univariate mean-reversion despite the strong multivariate
mean-reversion. I will argue in fact that the estimates are very close to the case of uncorre-

lated returns, with (1) = 1, but we’ll get there slowly. For now think of this as an example

of how ARMA(1,1) behave

•If  =  = 096, we then have  =  =  and we have exactly the case of a pure random

walk in returns. If   , then  will be between  and , and slightly less than , actually

a little bit of univariate “momentum.” Estimates of  in small (80 year) samples are quite

downward-biased, so in fact bias-corrected estimates of  are 0.96 or even larger. Thus, I

think our world is actually even closer to the case that there is no univariate mean-reversion

at all, and possibly a little bit of “momentum” as well, than the baseline VAR estimates

I have been using imply. Finally, ( ) = 0 is not written in stone. Adding small

amounts of correlation (such as the 7% observed in sample) can also push the above result

up to the random walk or momentum camp.

•(Pastor and Stambaugh argue that Bayesian considerations move you even more to the
“momentum” camp. Seeing a string of past positive returns changes your Baysian guess

about mean returns, and that is just like momentum. Here I’m arguing you don’t even need
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Figure 6: Univariate impulse response function for (1 − 094)+1 = (1 − 0951)+1, as
implied by the restricted VAR. The blue line gives the response of returns, the green line

gives the response of cumulative returns. a(1) gives the limiting value of the cumuative

response.

that complication; pure old fashioned statistics say that the VAR implies close to random-

walk return behavior.)

•Of course, we’re here understand this result, so let’s plunge in to a little deeper exploration

Objective: understand that near-random walk is a robust result of the basic facts, not a knife

edge

Digression on the ARMA (1,1)

• State space model behind ARMA(1,1). This is an instance of a more general and pervasive
fact which you should know. Suppose expected returns follow an AR(1),

+1 =  + +1

+1 =  + +1

Then the univariate representation of  is an ARMA(1,1), with autoregressive root . This

holds for (+1 

+1) 6= 0. Strong negative correlation is in fact very important, as you

have seen.

Proof. As before, match autocorrelations

(1− )+1 =  + +1 −  = +1 − 
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•Filtering. Since the ARMA(1,1) answers the question, “what is (+1| −1 −2 )?” it
also answers the question “What is (| −1 −2 )? ” we can view the whole question
as, what can we learn about  (dp) by looking only at the history of ? You can view it as

a filtering exercise

• The ARMA(1,1,) with  near  is a process worth looking at and understanding. The

moving average representation is

(1− ) = (1− )

 =
1− 

1− 


 = 1 +
(− )

1− 


+1 = +1 + (− )
¡
 + −1 + 2−2 + 

¢
Thus, the impact response is one, but then there is a very long tail of potentially very small

following responses, all slightly positive or all slightly negative.

-The response of cumulative returns
P

=1 + is the cumulative sum of these responses. The

limiting cumulative response is a good characterization of “mean-reversion” vs. “momen-

tum,”

1 +
− 

1− 
=
1− 

1− 

It is either less than one (mean reversion) or greater than one (momentum) depending on

whether  is greater or less than .

-(This kind of process also shows up in discussions of permanent vs. transitory movements,

i.e. in GDP. If ∆ follows an ARMA(1,1), then  may have undiscovered transitory compo-

nents. In that context as well, I now think multivariate estimates far dominate univariate

approaches.)

•A particularly difficult process. The ARMA(1,1) process is very hard to approximate with
short-order AR models. If it’s mean-reverting, an AR(1) for returns would give a slightly

negative coefficient, and thus predict an oscillatory response function and also miss the

mean-reversion in cumulative returns. An AR(1) for cumulative returns would fit the first

few responses well, but then would decay to zero, predicting full mean reversion rather than

stop at 0.8. An AR(1) for (1− )+1 would impose a long-run response of 1. Higher order

ARs would not do any better

Anyway reality is not likely to be a pure ARMA(1,1) anyway. If reality has a lot of small

positive or negative responses, adding up to substantial momentum or mean reversion, but

that do not follow a simple low-order ARMA process, then you’re really stuck. You can try

a return to ML estimation and MA terms, now out of fashion in the VAR literature, but

you’re still stuck with the fact that ML wants to minimize one-step ahead forecast errors, and

will happily sacrifice long-run forecasts to do so. You can try a return to “nonparametric”

techniques like variance ratios.

•Moving averages, filters. If you must forecast an ARMA(1,1) or similar process from its

own past, a very good approximation to the optimal forecast is to use a long moving average.
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The actual forecast is this:

(1− )+1 = (1− )+1

(1− )

(1− )
+1 = +1∙

1 +
( − )

(1− )

¸
+1 = +1

+1 =
(− )

(1− )
 + +1

+1 = (− )
£
 + −2 + 2−2

¤
+ +1

 (+1) = (− )
£
 + −2 + 2−2

¤
( = (| −2 ) for all you filtering fans)

The long moving average of past returns captures well their information about future returns.

This is the heart of Fama and French’s idea to use long-run regressions in a univariate context.

It also gives you useful (soon) intuition about these processes: in one with “momentum,” a

long stretch of above average returns forecasts that this pattern will continue. In one with

“mean reversion,” a long stretch of positive past returns means future returns will be lower

• VARs are better. But I think the best answer is to estimate the two variable VAR — which
turns out to suffer from none of these problems — and find the implied univariate process.

dp just has much much more information about future returns. Why would you ever throw

out all that information? I’m conjecturing here that the implied univariate estimate from a

VAR is much more accurate than a direct univariate estimate, especially about long-horizon

features of the data — a(1). Moreover, why would any investor throw out information? To

what question is “look at the univariate response function” the answer, when the multivariate

data is available? Ask yourself why you care about the univariate process in the first place

— as I argue later you don’t.

More intuition for our case, and other possibilities

• Here is some intuition why we are very near  =  , and what the whole business means.

1. Three limits in our dp, ∆ VAR

- Look at the 2 = 0 and 2 = 0 limits. Naturally, these do not make assumptions about

( ).

+1 − 

+1 + 


 −  = +1 − 

(1 + 2)2 +
¡
1 + 2

¢
2

2 + 2
=

1 + 2



a)Only dividend growth shocks. Suppose 2 = 0 — no expected return shocks. Then of course

 = , the roots cancel, and returns are just a pure random walk. It’s even more obvious

in the context of the original VAR; if we have  =  and delete the  row, then returns
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and dividend growth are both random walks. In this case we even learn the multivariate

∆ shock by observing the univariate  shock. Of course, the potential for mean-reversion

comes from the presence of varying expected returns.

However, we have   2, the variance of expected returns is much smaller than the

variance of returns. This is why we have  ≈ , the nasty case of nearly-canceling roots.

b) Only expected-return shocks Suppose instead 2 = 0 In this case stocks really are like

bonds; there is no “cashflow” risk, there is only “expected return” risk. Thus, we should be

able to see expected return shocks! Now we have

−+1 + 

 = +1 − 

Matching autocorrelations, ¡
1 + 2

¢
2 = (1 + 2)2

2 = 2

Thus,  = , and returns follow

(1− ) +1 = (1− ) 

with  = 096  = 094, this implies

(1) =
1− 

1− 
=
004

006
=
2

3

This is a substantial amount of mean-reversion; A return shock is 1/3 temporary.

Notice in this example that

(  

 ) = (  +1 −−1+1) = −1

return shocks and expected return shocks are perfectly negatively correlated. I advertised

this correlation is important.

However, this example is still puzzling. Why aren’t return shocks completely transitory?

There is no cashflow news to confound with discount rate news! Worse, if  is larger,  = ,

we still are back to the case that returns are a random walk, and with   , we have

momentum in returns, even though there are no cashflow shocks; the only multivariate

response is the above response to a dp shock. How can this possibly be?

Answer: the univariate shocks are not the multivariate shocks, even in this case that there is

only one multivariate shock. This case makes it easy to see what I mean by that statement.

There are two ways to see this. First, use the  solution we just arrived at. Then, univariate

and multivariate shocks must be related by

−+1 + 

 = +1 − 

(−+ ) 

+1 = (1− )+1



+1 =

(1− )

(−+ )
+1



+1 =

(1− )

− (1− −1)
+1
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the multivariate dividend yield shock is a function of future univariate return shocks. The

dividend yield shock “reveals the future” of return shocks.

In the opposite direction, you can write

(−+ ) 

+1 = (1− )+1

(−+ )

(1− )


+1 = +1

so +1 is a combination of current and past 
 shocks. But it’s not an invertible function

of these shocks, you can’t undo this relationship and get the  shocks out.

Alternatively, go back to this point

−+1 + 

 = +1 − 

It’s tempting to solve this with  = − and  = 1 — and thus to argue that univariate

and multivariate shocks are the same. But you can’t do that — the Wold representation needs

convergent sums in both AR and MA representations. The shock  needs to be a sum of

current and past returns, not current and future returns.

Why are univariate and multivariate shocks different? Because even here, you can’t tell

whether a return was expected or unexpected in the multivariate representation. Even

though  is constant, you don’t see  the price. Thus, if you observe a 10% return, you

don’t know if this is a good shock, or if in fact we have a 20% dividend yield, and this is a

bad shock. You could learn that if you could see future returns, but not just by seeing past

returns.

You might object, “think of a bond. You can know the price just by looking at past returns.”

But this is a perpetuity, you never saw the “initial” price, and it’s been there forever. So,

while you can back out a bond price from its return data and knowledge of the initial price,

that does not mean you can back out p here from the history of returns.

The second case below adds even more intuition for this specification

2. Modeling returns and expected returns.

You can get even more intuition by thinking of the univariate system as driven by an un-

observed expected return . Of course with  = (1− ) this is just notation, but it’s

useful to think about “the correlation of ex-post return and expected return shocks.”

So, think about

+1 =  + +1 (6)

+1 =  + +1

This is a very important class of process, and we’ll see it over and over again, so it’s important

to understand how it works.

Proceeding as before, the univariate representation is

(1− )+1 = (1− )+1

+1 −  +  = +1 − 
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¡
1 + 2

¢
2 + 2 − 2 = (1 + 2)2

−2 +  = −2¡
1 + 2

¢
+

2
2
− 2

2

− 
2

=
1 + 2



a) Suppose (  

 ) = 0, what if return and expected return shocks were uncorrelated?

If you were new to this game or not paying attention, you might write this down as a place

to start. This is a nice case because it displays momentum.

1 + 2 +
2
2


=
1 + 2



1


+ +

1



2
2
=
1


+ 

+ 1 is a declining function on (0,1), so   , (1− )(1− )  1.

This is really nice, because it illustrates my intuition from above that we really expected

momentum here, not mean-reversion. If we enter a period of high expected returns, you

should see high actual returns after a while, and your experience of high actual returns

should tell you about the high expected returns. Many papers have tried to filter return

series and come up with such estimates, especially with a Bayesian flavor. We know it’s

fundamentally misguided, but the key will be to understand why.

The top left corner of Figure 7 plots  and  from this process. You should really understand

how (6) works, and how it’s a natural model for returns. You should also intuit that this one

displays “momentum.” If you see a period of high returns, it’s clear that expected returns

continue to be high. You can guess a lot about the red line without seeing it. (This is all

about (| −1 −2 )) The puzzle really is how do we get mean reversion ever! How

do we escape the logic that a period of high expected returns should be revealed by the

experience of high ex-post returns?

b) Well, one aspect I’ve been stressing in our data is that return shocks are very negatively

correlated with expected-return shocks. This is equivalent to the near zero correlation of

expected-return shocks with dividend-growth shocks, via the identity. A rise in expected

return, since it comes with no news about cashflows, must send prices down, ( )  0.

So, let’s explore the opposite possibility, that return shocks are perfectly negatively correlated

with expected return shocks,  = −. This is also the 2 = 0 limit we explored a bit
above.

Intuitively, you see how it has the potential to overturn the last result.

If expected returns rise, you get a huge negative shock to ex-post returns. Then you get

many years of slightly higher (on average) ex-post returns. If the initial negative shock is

large, and the subsequent expected returns not so large or long-lasting, then the average ex-

post return during a period of high expected return will be negative, mean reversion. If the
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Figure 7: Simulations from +1 = + +1, +1 = + +1.  is the red line,  is the blue

line.

initial negative shock is medium, and the subsequent expected returns medium size and length,

the average ex-post return during a period of high expected return will be zero — uncorrelated.

If the initial negative shock is small or absent, and the subsequent expected returns are large

and long-lasting, then the average ex-post return during a period of high expected return will

be positive — momentum.

Let’s put that in equations and pictures. Mechanically, we have now¡
1 + 2

¢
+

2
2
+ 2



+ 


=
1 + 2



1 +
³
+ 



´2
+ 



=
1 + 2



If + 


 1 the solution is obvious

+



 1 :  = +





Again, this is    so (1− )(1− )  1 or mean-reversion.

In fact, it doesn’t take much  (volatility of expected returns relative to return shocks)

to induce complete mean reversion! If  = (1 − ) (i.e. 0.06) then  = 1 and we have

(1) = 0!
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For bigger  you need to be a bit careful. There is always a solution with root greater

than one and a solution with root less than one. Note

1 + 2


=
1


+ 

so we always have two solutions. We need to pick the solution less than one, so if we get a

really big , the answer is

+



 1 :  =

1

+ 




Now as  increases we get steadily less mean reversion. For   2(1 − ) we go

back to uncorrelated returns and even momentum.

In the top left corner of Figure 7 I used a very large value of  so you could see the

variation in expected return more clearly, and it would not get buried in an avalanche of

ex-post returns. In the top right corner, I put the correlation of expected returns with

ex-post returns to -1, as indicated. Surprisingly (to me) that’s not enough — we still have

momentum. Why? Well, we still have a very high . The negative return shock can

be no larger than  times the expected return-shock (correlations can’t be greater than

one), so though you can see rises in expected returns coming with declines in ex-post returns,

those declines in ex-post returns aren’t enough to offset the higher subsequent ex-post returns

when expected returns rise. In the context of our formula,  = 005020 = 025 which

puts us back into momentum territory.

Clearly, to see mean-reversion we have to lower . The variance of ex-post returns

must be higher, to better obscure the information ex-post returns give you about expected

returns. The bottom left panel of Figure 7 lowers  back to the value we have in the

VAR, but returns to the uncorrelated-error specification. You can see clearly how having a

larger variance of ex-post returns makes it harder to see variation in expected returns from

the history of returns alone. But as shown, and as from the above equation, we’re always in

momentum-land with uncorrelated errors.

To get mean-reversion or uncorrelated returns, we need both a limited amount of , so

that it is hard to learn about  from  before running out of 
√
 , and we need negative

correlation of return and expected-return shocks. I plot that case in the bottom right.

Here I generate slight mean-reversion (I still have perfectly negatively correlated shocks).

Obviously, we can get a pure random walk out of this setup with

 =  =
1

+ 





=

1


−  =

1

094
− 094 = 012

At least visually, the bottom right panel is pretty clear — average ex-post returns are no

higher during periods of truly high expected returns than they are during periods of truly low

expected returns.

112



Our VAR

Now, why is it so robust that our VAR generates a near-random walk in the univariate

representation? This seems like a knife-edge case when we look at the last set of results. Yet,

when we look at the formula for our VAR

(1 + 2)2 +
¡
1 + 2

¢
2

2 + 2
=
1 + 2



there is no wiggle room at all.  has to be somewhere in between  = 094 (and downward

biased) and  = 096.

1. The near-zero correlation of dividend growth and dp shocks means that return and dp

shocks are strongly negatively correlated.

2.

2 = (1− )
2
2() =

(1− )
2¡

1− 2
¢ 2

2 = 2
¡− + 

¢
= 22 + 2

2
2
=

(1−)2
(1−2)

2

22 + 2
=

(1−)2
(1−2)

2 +
2


2


But
(1−)2
(1−2)

is a small number. Even if dividend growth is constant, expected return shocks

are small compared to actual return shocks. Why? because  is a large number — because

expected return shocks are long lasting.

+1 = (+1 −)
³
∆+1 +

X
−1∆+ −

X
−1+

´
+1 = (+1 −) +1

Far from a knife-edge, these are very robust features of the data!

Multivariate

The “guess the AR root” trick can be extended to a multivariate system. Suppose we have

+1 = 0 + +1

+1 = Φ + +1

we can eigenvalue decompose , e.g.

Φ = 

∙
1 0

0 2

¸
−1
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and thus wolg write the system in terms of diagonal 

+1 =  +  + +1∙
+1
+1

¸
=

∙
 0

0 

¸ ∙



¸
+

∙
+1


+1

¸
Now we have

+1 =  (1− )
−1

 + 
¡
1− 

¢−1


 + +1

Hence

(1− )
¡
1− 

¢
+1 = 

¡
1− 

¢
 +  (1− ) 


 + (1− )

¡
1− 

¢
+1

Aha,  follows an ARMA(2,2)!

I don’t know how to generalize this to the case that  itself is a state variable. The other

project is, how to find the implied { } representation so you can see that multivariate
VARs condition down to something like the restricted VAR.

Summary

-Multivariate predictability / mean reversion is strong. If you see a price rise or return with

no change in current dividend, you know that price rise will completely melt away.

-Univariate predictability is weak or absent. If you see a price rise or return and don’t look

at current dividends, your best forecast is that this rise is essentially permanent.

-No, these two statements are not inconsistent. It is possible for stocks to be predictable

and have strong mean-reverting components, yet display no univariate mean-reversion nor

decline in variance with horizon. In fact, it’s easy for dp predictability to be consistent with

“momentum,” returns that are positively autocorrelated.

- Our baseline VAR implies very slight univariate mean-reversion. It is attractively close to

a parameter configuration that implies uncorrelated returns over time.

- The two key features of our data that drive this result: 1) return shocks are negatively

correlated with expected-return or dp shocks. When dp rises unexpectedly, returns fall.

This lower ex-post return plus the period of higher ex-post returns after the expected return

rise offset, so that average ex-post returns are no higher nor lower than usual during a period

of high expected returns. 2) expected return variation is quite small compared to ex-post

return variation. Thus, it is very hard to see a period of high expected returns by looking

at ex-post returns.

-WARNING: There is no interesting economic question to which this is the answer. You are

often told that if “stocks are safer in the long run” then “investors with long horizons should

hold more stocks.” This certainly looks sensible — ()2(), the standard formula for

portfolio shares, is better at long horizons. But this formula assumes iid, and the whole

point is that returns are not iid. If you do an optimal portfolio theory with non-iid returns,

you not blindly allocate more to stocks when univariate mean-reversion is higher. You have
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to do the whole state-variable thing. So this is an interesting academic exercise, uniting the

univariate and multivariate representations, but it does not have the practical relevance you

might suspect.

-WARNING 2: There is no interesting statistical question to which this is the answer either.

Why would you care about the univariate wold representation when you have more informa-

tion? Why would you forecast weather using a week of lagged temperature data when you

have the NWS forecast?
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What’s new

More variables

For stocks, I emphasized D/P for simplicity, but many other variables forecast stock returns,

and putting them together you get stronger forecasts. Modern research does not stop at

D/P, we run regressions with lots of extra variables

+1 = + 1( ) + 2 + 3+ +1

Among others:

1. The term premium (bond yield spread) forecasts stocks as well as bonds. (The CP

bond-return forecasting factor is even better)

2. The consumption/wealth ratio (“cay”),

3. Investment/capital ratios (bad economic times mean higher returns to the few who

hold risk) and numerous other economic variables.

4. Share issuance (firms issue shares when prices are high, i.e. cost of capital = future

returns are low)

5. Volatility and implied volatility

6. Other cointegrating vectors / divisors. D/E (or P/E), B/M (Or B/D) etc.

7. Even more variables forecast individual stock returns, B/M, size, past returns (mo-

mentum), accruals, etc. Since dividends can be zero and earnings can be negative

book/market is often favored in place of D/P for individual firms, but gives similar

results.

This is very important. D/P work (mine in particular) has often been misquoted as “div-

idends are not predictable.” No, “dividends are not predictable using only past dividends,

returns and dividend yields.” If you use other variables, all bets are off.

To show you what happens with more variables, I’ll show you what happens with a particular

favorite, Lettau and Ludvigson’s cay variable. The idea is simple and natural. Consumers

look forward. If a price movement is “temporary,” they don’t lower consumption because

they know the market will “bounce back.” Well, maybe yes, maybe no, let’s look at the data.

Cay helps to forecast returns

Here is a reproduction from Lettau-Ludvigson’s Table III. It’s also useful to give you a sense

that yes, people are using all sorts of other variables to forecast returns. For the moment,

most papers are one-variable papers; there is not much work yet really sorting out which

variables survive in multiple regressions
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cay d-p d-e rrel trm def R2

2.17 0.09

(3.23)

0.025 0.00

(0.97)

2.27 -0.011 0.09

(4.12) (-0.40)

1.91 0.011 -0.004 -1.38 -0.08 -0.88 0.10

(3.20) (0.10) (0.27) (2.44) (-0.12) (-0.54)

d-e=dividend/earnings; rrel = tbill rate/MA; trm=10yr-3 mo yield; def=credit spread

Lettau/Ludvigson Table III. Quarterly Regressions forecasting S&P500 index excess

returns 1953-1998.

Another LL table:. This one shows you that cay is helpful at a 1 year horizon, but does not

help so much at long horizons. If you therefore suspect that cay is a more quickly mean-

reverting variable, you guess right.

Note, D/P looks terrible here. That’s because of the 52 (starts late) - 98 ( just before the

big crash) sample. Always a skeptic, I reran the regression with more recent data (This data
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is on Sydney Ludvigson’s website.)

Regression cay t dp t R2

Excess Return cay only 5.0 (3.5) 0.15

dp only 4.5 (2.0) 0.08

cay, dp 4.7 (3.1) 3.9 (1.8) 0.21

Return cay only 5.0 (3.6) 0.15

dp only 5.5 (2.6) 0.12

cay, dp 4.6 (3.1) 4.9 (2.3) 0.25

+1 = + ×  + ×  = +1; VW returns (-TB), 1952-2008

First row: Yes, cay still forecasts nicely including post-1998 data. Second row: our familiar

D/P regression. The coefficient and 2 are about the same as above, but the  is smaller

since the sample is shorter. Note  has a bigger 2 and , at least for one period returns.

(cay is much less persistent, so is much less important for long-horizon returns, not shown.)

Third row: putting them both together, both dp and cay coefficients and t statistics are

only slightly lower in multiple regressions. DP coefficients of 4-5 are economically huge, so

I wouldn’t drop it.

In sum, I conclude that both cay and D/P are, together, useful for forecasting returns. cay

contributes another independent (orthogonal) dimension of return forecastability.

However, at long horizons, the improvement is much less significant. cay must be a more

quickly mean-reverting variable.

Is there one big data point or other skulduggery? Always plot your data. I plot the 

forecast, the  forecast, and the actual +1 together so we can see how they work. In

the second graph, I plot the multiple regression forecast using both cay and D/P together.

As you can see, cay seems to capture the “wiggles” in returns better than the slow-moving

D/P It also helps a lot in the late 1990s, when prices were high, and D/P along with Bob

Shiller and Alan Greenspan were issuing dire forecasts year after year and getting it wrong.

But we still need D/P to capture the slower-moving trend. D/P helps to get the boom of the

80s and early 90s right (when P/D was low) and the poor returns of the post 2000 period.

You see in the graphs why the regressions seemed to want them both; one tells you about

wiggles, the other about trends.

The combined forecast based on Dec 2008 data pointed to a big rebound which we know

happened in 2009. Wealth fell a lot more than consumption in the crash.
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Figure 8: Green: Exess return forecast from D/P. Blue: Excess return forecast from cay.

Dashed: Actual excess return. Note +1 is plotted at the same date as + 
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Figure 9: Red: excess return forecast using both cay and D/P.Blue: forecast using only cay.

Dashed: actual excess return. +1 is plotted on the same date as + .
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Cay, and identities in larger VARs.

Puzzle. “Wait a minute,” I hope you’re saying. “We found that return predictability was

more than enough to account for all the variance of dividend yields. Now you’re telling me

that returns are even more predictable than we thought. But we can’t account for more

than 100% of dividend yield volatility. What gives?”

Forecasting both. Well, the present value identity still holds,

 −  ≈ 

∞X
=1

−1 (+ −∆+) 

Thus, if another variable helps  −  to forecast +1 it must also help to forecast dividend

growth ∆+ or long-run returns +. These forecasts must offset, so that given  − ,

the forecast of the entire right hand side does not change.

Another way of putting the issue: Price-dividend ratios are attractive forecasters because they

reveal to us market expectations of future returns. However, they mix that information with

expectations of future returns many years ahead, and information about dividend growth.

If we can find other variables that forecast long run returns or dividend growth, we can

use them to “clean up” d-p, so that d-p more accurately forecasts one-period returns. (We

see the same pattern in the cross section, e.g. Fama and French’s “dissecting anomalies.”

Variables that forecast cash flows help to “clean up” B/M of cashflow-forecast effects and

thus help to forecast returns.)

Identities in larger systems. This intuition just reflects how our identities — all of which

stem from the return identity — generalize for larger systems. If we project (run a multiple

regression) of the present value identity on  − , and a new variable  we obtain

 =  −∆

 =
³
∆ 

−  

´
 +

³
∆ 

−  

´


Thus,

•The regression coefficients (direct or implied by VARs) of long-run forecasting regressions
(this defines )

 =  () +   + 

∆ = ∆ 
() + ∆ 

 + 

must obey the identities

1 = ∆ 
−  

0 = ∆ 
−  
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We already had the first equality; this was my “variance decomposition.” It now applies to

multiple regression coefficients. The news is the second equality:

→If another variable z helps d-p to forecast long-run dividend growth ∆ 
6= 0 given d-p,

it must help to forecast long-run returns  
6= 0 and vice versa.

These “long-run” coefficients are the sum of one-period coefficients. Thus, the extra variable

 can forecast one-year returns by forecasting a different pattern, yet leaving long-run returns

 alone. Denote multiple regression coefficients

+ = 
()

() + () + +

then

  =

∞X
=1

−1()

etc. Thus, the “long run” identity above implies that

- A variable  may help d-p to forecast one-year returns if it alters the temporal pattern of

return forecasts.

In sum,

- If +1 becomes more predictable, then +  ≥ 2 must become more predictable, or

∆+  ≥ 1 must become more predictable, and the forecasts must perfectly offset.
-The shock identity

+1 = −+1 + +1

Is unchanged. The shock +1 need not be reflected in any other shock.

-Impulse-response coefficient. The impulse-response functions

( −−1) + = 
()

→

 + ()→




where  ≡ (·| ) must obey the same relation,

1 =

∞X
=1

−1()→ −
∞X
=1

−1()→∆

0 =

∞X
=1

−1()→ −
∞X
=1

−1()→∆

Just take innovations +1 − of the basic present value identity

 =

∞X
=1

−1+ −
∞X
=1

−1∆+

, in response to a single shock to  or .
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•GeneralizationYou can write the identities down for arbitrary VARs too, e.g.⎡⎢⎢⎣
+1
∆+1
+1
+1

⎤⎥⎥⎦ = 

⎡⎢⎢⎣

∆



⎤⎥⎥⎦+
⎡⎢⎢⎣

+1
+1


+1

+1

⎤⎥⎥⎦
Then the identity

+1 = ∆+1 − +1 + 

implies

 =  −  +
£
0 0 1 0

¤
where  denotes the  row of , and we still have

+1 = +1 − 

+1

•Which is it? Does cay help to forecast one period returns because it changes the time path

of expected returns? Or does it forecast higher dividend growth at the same time as higher

returns, in a way that offsets so that  −  is unaffected?

To answer these questions I generalized the VAR we studied above to include cay. Here is a

table from “Discount rates.” Here I rescaled cay to have variance 1 so it would be about on

the same size as dp. This accounts for the lower numerical value of the coefficients

Coefficients t-statistics Other statistics

    2  [(+1)]%
[(+1)]

(+1)

+1 0.12 0.071 (2.14) (3.19) 0.26 8.99 0.91

∆+1 0.024 0.025 (0.46) (1.69) 0.05 2.80 0.12

+1 0.94 -0.047 (20.4) (-3.05) 0.91

+1 0.15 0.65 (0.63) (5.95) 0.43

 =
P∞

=1 
−1+ 1.29 0.033

∆ =
P∞

=1 
−1∆+ 0.29 0.033

Table 5. Forecasting regressions using dividend yield and consumption-wealth

ratio, 1952-2009, annual data. Long-run coefficients are computed using a first-

order VAR with  and  as state variables. Each regression includes a

constant. The long-run regression coefficients are implied by the VAR.

(Each regression also has constants.) This is much prettier in vector notation, with  = ,⎡⎢⎢⎣
+1
∆+1
+1
+1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0 0  
0 0  
0 0  
0 0  

⎤⎥⎥⎦
⎡⎢⎢⎣


∆



⎤⎥⎥⎦+
⎡⎢⎢⎣

+1
+1


+1

+1

⎤⎥⎥⎦
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This is exactly what we did before, just with one more variable. (Again, you can painlessly

estimate numbers in place of the zeros, but they don’t make much difference.)

Cay obviously is helping a lot to forecast returns. Cay doesn’t look like it’s doing much to

forecast dividend growth. We may want to think of a simplified VAR with both  and  = 0

in this case. Cay mean-reverts much quicker than dp, with an autoregressive coefficient of

0.65 rather than 0.94. This is a central part of “wiggles” vs. “trends” in my graphs. cay

and dp don’t seem to have all that much to do with each other. A high cay forecasts a little

bit lower dp (t=-3.05), but not the other way around.

As above, these one-period regression estimates obey the identities

 = 1−  + 

 =  − 

Again, the first one is as before, now applying to multiple regression coefficients. The second

one is new. Obviously, how a variable helps to forecast returns must be linked to its ability

to forecast prices or dividends! Duh, but as you’ve seen before these identities can yield a

lot of intuition.

The above estimates obey the identities of course.  has risen to 0.12 with a rise in  to

0.024. This is an effect of the sample — post 1953 and including the crash of 2008. (It is

not a difference between single and multiple regression coefficients in this sample; they are

nearly identical.) Relative to the 1926-2008 sample, returns are “even more” predictable,

there is no change in  and so  must rise in the “wrong” direction (high prices mean lower

dividends).

Here are long run forecasts, from the cay dp VAR. There’s almost no difference! How can

this be? Let’s track it down.

1950 1960 1970 1980 1990 2000 2010
−5

−4.5

−4

−3.5

−3

−2.5

 

 

E(rlr|dp,cay)

E(rlr|dp)
dp

Dividend yield and expected long horizon returns, 

 = 

P∞
=1 

−1+.
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Figure ?? presents the response functions. The natural shocks (consistent with the identity

 = − + ) are now

∆ shock:
£
   

¤
=
£
1 1 0 0

¤
 shock:

£
   

¤
=
£ − 0 1 0

¤
 shock :

£
   

¤
=
£
0 0 0 1

¤
The response to a dividend growth shock looks almost the same as it did in Figure 3, so

there is no point in repeating it and I don’t graph it. It’s still a pure “shock to current and

expected cashflows with no change in expected returns.”

Next, let’s look at a dividend-yield shock 

 . This response looks almost exactly as before

in Figure 3.  and  are a very little bit larger in this sample (this is an effect of leaving

out 1926-1951), but that’s it, and the  response is still statistically insignificant. Thus, if

we see  change with no current change in  or ∆, this is still primarily an “expected

return shock.”

The right hand panel of Figure ?? gives the news. Here, I plot the result of a shock to 



 = 1 with no change in  


 = 0 or dividend growth  = 0. As a result there is no

contemporaneous change in return either. As you can see, the rise in cay with no change in

dp corresponds to a sharp rise in expected returns at time  + 1. That’s the finding of our

regressions above. However, the expected-return movement is short-lived and even reverses

after 6 years. Because the sample coefficient of dividend growth on cay is positive (as we had

  0), a shock to cay also corresponds to a smaller and similar short-term rise in expected

dividend growth. However, this is also statistically insignificant.
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The regression-coefficient identities also apply to implulse-response coefficients, as above.

(dp shock) 1 =

∞X
=1

−1
³


 → ∆+

´
−

∞X
=1

−1
³


 → +

´
and

(cay shock) 0 =

∞X
=1

−1 ( → ∆+)−
∞X
=1

−1 ( → +)
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The responses to the dividend yield shock must add up to one; the responses to the cay

shock must add up to zero.

Equivalently, define the “long run” response³


 → 

´
=

∞X
=1

−1
³


 → +

´
These identities are exactly the same as the identities for regression coefficients,

1 =
³


 → ∆

´
−
³


 → 

´
0 =

¡


 → ∆

¢− ¡ → +
¢


At last we can answer the puzzle: how can cay give us even more expected returns without

explaining “too much” dividend yield volatility. If  rises, returns +1 rise 0.07 (this is

the first response on the right hand side, 

 → +1). What is less? The graph (blue)

shows that the whole term
¡


 → +

¢
is
P∞

=1 
−1 ( → +) = 0033. Thus, all those

negative terms on the right hand side of the blue line add up to the difference

• The main reason  can help to forecast positive near-term returns is that it forecasts

a long steam of negative long term returns.

If the dividends did not move at all, this would be the whole story. The point estimates say

that the small dividend forecast offsets the remaining 0.0033 return forecast:

• Higher cay means both higher returns and higher dividend growth. These offset so
that d-p doesn’t change.

Now, cay’s dividend growth forecasts are not statistically significant, so we should probably

simplify our picture of the world by setting the coefficient to zero. Then the entire  shock

corresponds to expected returns, and the entire  shock corresponds to a variation in the

time-path of expected returns.

However, I left the point estimate dividend coefficients in the graph ?? to emphasize an

important point. Dividend growth is forecastable by many other time series. Many other

forecasting variables help dp to forecast returns by forecasting dividend growth, in such a

way that the dividend growth and return forecasts offset. Don’t leave thinking that dividend

growth is a pure random walk just because dp and cay can’t forecast it!

Variance decompositions

How does adding more variables change our variance decompositions? How does it change

our answer to the question “does price (/dividend) volatility come from cash flow forecasts,

discount rates, or bubbles?”
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Again, we started from the dividend yield identity,

 = 

∞X
=1

−1∆+ −

∞X
=1

−1+

Our first “variance decomposition” multiplied both sides by  −  and took expectations,

relating (− ) to the ability of −  to forecast dividend growth and returns.

• This variance decomposition is completely unaffected by the presence of cay or other
forecasting variables.

In this calculation we related dividend yield variance to the ability of dividend yields to

forecast returns and dividend growth, with no help from cay or other variables.

The Campbell variance decomposition is affected by extra variables. Here we use  from

the whole VAR, and simply take variances of both sides,

() = 
£


¡

¢¤
+ 

£


¡

¢¤− 2 £

¡

¢
 

¡

¢¤

where I denote the “long run return”

∞X
=1

−1+ = 

This decomposition can reflect the fact that 

¡

¢
varies even more than it does using only

d-p to forecast, though we know that such greater forecastability will have to be met by a

larger value of the troublesome covariance term.

I just calculate the  terms using both  and  as forecasters and take the variance.

Here is the result. The left panel shows what happens without cay. The right panel shows

how that changes when we add cay to the system.

Only dp dp and cay

2  % 2(dp) 2  % 2(dp)

var(dp) 0.123 0.351 100 0.124 0.352 100

var
£
(


 )
¤

0.223 0.472 180 0.224 0.473 181

var
£
(∆ )

¤
0.015 0.120 12 0.015 0.122 12

-2*cov
£
(


 ) (∆ )

¤
-0.114 -92 -0.115 -92

Variance decomposition, 1951-2008

Start with the results using only dp. You can see some of the same points that we saw in

the variance decomposition based on covariances. The variance of expected long-run returns

is in fact almost double what is needed on its own to explain dividend yield volatility. The

standard deviation of expected returns is about one and a half times as much as needed.

Expected long-run dividend growth contributes very little. (The larger  in this sample

accounts for the larger numbers.)

126



Alas, this decomposition requires the covariance term, and it is large. Expected dividend

growth and expected returns are correlated. In fact, in this case, they are perfectly correlated.

Each forecast is based on − after all, and (−) is perfectly correlated with (−).
Now, in this sample  is not exactly zero.  is a little “too big,” so  must also be a little

“too big” to offset it. When  changes, expected returns rise more than they need to, so

expected dividend growth must move at the same time to forestall a larger dp change. So, it

makes sense, but it’s not very satisfactory to say “92 percent of the variance of price-dividend

growth comes from the covariance of expected return and dividend forecasts.”

However, despite this disadvantage (which isn’t so bad once you understand it), this variance

decomposition has some advantages. You can directly compute the contribution of varying

expected long run returns and long-run dividend growth. to dividend yields; you can look

at (

P
−1+) and (

P
−1∆+) and see how big each is. And, you can add

extra forecasters to  and see what happens in larger systems.

Now, we can look at what happens when we add . The result is almost exactly the same!

How is that possible? Cay helps to predict one-period returns, so you’d think the variance

of expected returns must rise when we add cay to the forecast. However, the variance of

expected long-run returns cannot rise unless cay helps to forecast long-run dividend growth.

Cay mostly helps to predict one period returns by changing the time-path of expected returns,

in a way that leaves the long-run return completely unchanged. To see a change in variance

decomposition, you need to find a variable that predicts long run returns; to do so it must

predict long-run dividend growth as well (since it can’t change p-d). We would see both

terms rise, and a larger negative covariance term. A variable such as cay that only changes

the time-path of expected returns has no effect on volatility tests.

In sum,

• cay helps to predict one-period returns largely by changing the time-path of predicted
returns. When cay rises, but dp stays the same, near-term expected returns rise, long-

term expected returns fall, and the long-run expected return is largely unchanged.

• As a result, adding cay to the regressions does not make much difference at all to the
price-dividend variance decomposition, the question “does price variation come from

cashflows or discount rates?”

• Other variables may help to predict one-year returns by also helping to predict divi-
dend growth. If, in addition, they help to predict long-run dividend growth, they will

change the answer to the variance decomposition of price-dividend ratios, by raising

the variance of long-run expected returns, the variance of long-run expected dividend

growth and the covariance, since such changes must come together and offset each

other.

• Cay is a good example of my disenchantment with the “structural” interpretation
above. In the information set including cay, “true” expected return variation is not

the AR(1) that we used to digest the dp-r system.
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More variables still

What’s left to do? A lot! Most current research still proceeds on a variable by variable basis.

First we need to sort out which variables really do help, and at which horizons. You can’t

just stuff them all in a big multiple regression because there are more candidate variables

than data points.

Second, we have proceeded on an asset by asset basis; we found stock return forecasters,

bond return forecasters, etc. The next question is, which of these are really common across

assets, and which are truly idiosyncratic to an asset class? As a first step, Cochrane and

Piazzesi found some big surprises in finding the one variable that forecast all bond returns.

Now, can we do something like that across asset classes, not just across maturities?

And finally, don’t forget the identities. At a minium it helps the intuition and economic

believability a lot if you understand the other thing a variable must forecast to help forecast

returns.

What about Repurchases?

(Boudoukh et al. Journal of finance). This is a cautionary tale about plotting your data

before you publish a paper.

Note there is nothing wrong with using CRSP dividends. P really is the present value of

future D, not of "repurchase adjusted" future D. You can always hold your stock when they

repurchase.

However, if firms stop paying regular dividends, the time-series process of dividends could

change, resulting in much delayed big lumps.

Anyway, you can look at price/x and see if it forecasts returns for any x.

Data definitions:

Gross = (Dividends + Repurchases)/Price;

Net: (Dividends + Repurchases - Issues) / Price (net).

CF= based on cash flows, TS = based on treasury stock data.

Table 2:
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0.267 R2!!!Can it be that good?

1930 1940 1950 1960 1970 1980 1990 2000
−3

−2

−1

0

1

2

3

4

5

6

7

cash−flow based payout yields
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Blue: D/P. Green: Payout/P. Red: (Net Payout)/P. Dashed: Return/10

variable   2

1926-2003

DP 4.11 2.70 0.08

payout 5.25 3.46 0.10

net 5.88 5.05 0.22(!)

1931-2003

DP 4.04 2.69 0.09

payout 4.91 3.23 0.11

net 4.57 3.25 0.12

Appendix (not in lecture).

These are some issues I have talked about in the past, but decided to demote from lectures

and required reading this year.

Other present value identities and models

CS variations

There are a lot of variations on the Campbell-Shiller identity

- Real and nominal. It doesn’t make any statistically significant difference.

 −  = 

∞X
=1

−1 [(∆+ − +)− (+ − +)]

- Dividend growth, interest rates, and risk premiums. No surprise, it’s all excess returns.

 −  = 

∞X
=1

−1
h
∆+ −

³
+ − 


+

´
− 


+

i
- Vuolteenaho: a similar market/book expansion useful for individual stocks, which may have

 = 0. .

log

µ




¶
=̃

X

∙
log

µ
1 +

+

+

¶
− +

¸
- An example of how to use other units: an identity for price-earnings ratios rather than

dividend. This method lets you use any other divisor

( − ) =

∞X
=1

−1 [∆+ − + − (1− ) (+ − +)]
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Derivation:

+1 =  (+1 − +1)− ( − ) +∆+1

+1 =  (+1 − +1)− ( − ) +  (+1 − +1)− ( − ) +∆+1

+1 =  (+1 − +1)−( − )+ (+1 − +1)−( − )+∆+1+(+1 − +1)−(−)
+1 =  (+1 − +1)− ( − )− (1− ) (+1 − +1) +∆+1

( − ) = ∆+1 − +1 − (1− ) (+1 − +1) +  (+1 − +1)

- The same idea has bee used all over the place. For example ?? express that the net debt

position of a country in terms of future trade surpluses and future returns on holders of the

debt. Surprise surprise countries tend to “default” (offer low returns) on debt rather than

run export surpluses.

- I still like the identity in Cochrane (1991). It lets you talk about why the mean pd and

mean return is higher in some securities than others. But I have to admit CS won the race.

Theirs is tightly linked to the return identity, which is another plus.

An exact return-based present value relation

You can do the same iteration without linearization

+1 =
+1 ++1



 =
1

+1

(+1 ++1)

 =
1

+1

+1 +
1

+1

1

+2

+2 +
1

+1

1

+2

+2

Similarly

 =

∞X
=1

Ã
Y

=1

−1+

!
+





=

∞X
=1

Ã
Y

=1

−1+
+

+−1

!

- Again, this is not a model, it’s an identity. It has to work. You can always “discount” with

returns.

- Again this works ex post as well as ex ante. (You can always add E)

- It makes the general point, High price/dividend ratios, must mechanically come from high

future dividend growth or low future returns (or PD that rise forever)

- But this is not very useful, because it’s complex. The linearized formula lets you connect

with linear time series tools, and see the first order effects of “expected return” thinking

on prices. The linearized formula is leaving out some other effects of course, but is usually

pretty accurate, at least for the stock market as a whole. Don’t use it for securities with

wild payoffs like options.
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Gordon Growth

This is a great back of the envelope model

∆ =  constant.  = constant



=

1

 − 




=

Z ∞

=0

−
()


 =

Z ∞

=0

− =
Z ∞

=0

−(−) = − 1

 − 
−(−)

¯̄̄̄∞
0

=
1

 − 

Cool points you can see with this model:
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P
/D

 =
 1

/(
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a) How big are anomalies? Small ER changes mean big price changes

- Example. A bias/friction raises price 10%. (Socially responsible investing, HSBC) How

much does this affect returns? Say D/P = 2.5% (common) then




=  −  = 00250 = 25%




=

1

0025
= 40

1

44
= 00227 = 227%

a 10 % irrational price = 13 bp of return/year = 1bp per month. Standard tests argue

about 1% per month!

b) Growth stocks/high markets should be more volatile (Assuming the same volatility in r,g)

c) Volatility in g is good for prices, since it’s convex. (Pastor and Veronesi explanation of

the bubble)
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d) The last two examples shows an important difference between GG and CS. GG captures

the nonlinearities that we left out with CS. And, for small − , this is a decently nonlinear

formula.

e) If Er rises is this good or bad news for stock prices? Most beginners will say “good” and

get it wrong. Think like an economist!

What’s wrong? This formula assumes that  and  last forever. We often use it and then let

 and  vary, but that’s not correct. The linearized CS model lets us add time series models

for  and .

What about m?

Wait, you should be saying. Real present value models should look like

 = 

X
++

or

 = 

X


0(+)

0()
+

What’s going on?

The models I’m studying here are identities, not models. The point is to tie ideas and facts

about returns to ideas and facts about prices. We still have to explain returns, i.e. with

1 = 

∙

0(+1)

0()
+1

¸
and a real present value model is still our goal.
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Statistics and the dog

Statistical problem 1: Unit roots and Stambaugh bias:
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t−1
 + ε

t

•Distribution of estimates from an AR(1), with true coefficient = 0.99. T = 100. Note it’s

even worse if you allow a time trend. Basically, the mean and the trend soak up low-frequency

variation that is really stochastic.

mean median

b1 0.94 0.95

b2 0.90 0.91

Thus, in

+1 = +  + 

+1

 is biased down, because of overfitting of the sample mean.

•In the extreme case  = 1, there is no true mean. (Show a time series graph showing

“overfitting”of sample mean from a case with pure random walk and time trend fitted.)

•Bias = “correlation of errors with right hand variable.” Return regression

+1 = +  + +1
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The errors  and  are strongly negatively correlated. So downward bias in  which reflects

correlation of  with , means br is biased up.

• Also

 −  = 1− 

̂ − ̂ = 1− ̂

̂ = + (0)−10

is a linear function of errors. Thus, ̂ and ̂ inherit the correlation of  and  (and 
inherits the lack of correlation)

-There is no bias if   errors are not strongly correlated, i.e. ∆.regressions. There’s

nothing wrong in principle with regressions that have serially correlated right hand variables.

→ Return coefficient is biased up. Return t stats are biased up.

Stambaugh: OLS p-values of 6% (1927-1996) and 2% (1952-1996), correct: p-values are 17%

and 15%.

Statistical question 2: Are long horizons more powerful or not?

Intuition: long horizons are just a function of 1 period results. The 1 period regression is

MLE. What could be more powerful? Intuition 2: as we saw, long horizon standard errors

grew just as fast as means, so there seems to be no greater information in long horizon

regressions.

Answer: No. Intuition is wrong. (And so was I for many years, including statements in Asset

Pricing)

Statistical question 3:

Goyal-Welch systematically demolish the out-of sample forecastability of estimators. These

are useless in real time. (Show GW pictures) (Answer coming: They focus on “usefulness

to investor,” who presumably wants to market time. I agree. It’s not useful to investors.

In fact, it can’t be — the average investor is holding the market portfolio. But we can still

radically change our “view of the world.” 2 is not the measure of success!)

Answer

- But what about Dividend forecasts? You can’t have both dividend and return forecasts =

0! (They might answer, we can’t tell dividend forecast from  = −01, no extra information
here)

- I might also complain that point estimates rather than tests are what’s important. Viewed

as % of pd variance the point estimates are still huge and 100%/0%. But let’s not give up

yet.
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Dog null:

+1 =  + ( − ) + +1

∆+1 =  + ( − ) + +1

+1 − +1 =  + ( − ) + 

+1

+1 = −+1 +∆+1 + 

Again, the identities imply

 = 1− + 

 = − + 

The identities are the key to everything here:

1.  = 1−+ expresses possibilities.  = 0 must imply much higher  = 104 (bubbles)

or  = −01(dividend growth forecastable)
2. ̂ = 1− ̂+ ̂ holds in each sample too

3. The correlation of errors. Regression coefficients are linear function of errors, so ̂
and ̂ are negatively correlated, ̂ and ̂ are positively correlated, ̂ and ̂ are basically

uncorrelated.

Null:

 = 0,  = 094  = −(1− ) ≈ −01
 = 0,  = 099  = −(1− ) ≈ −005

The latter is, as we’ll see, a decent “bias-adjusted” version.

Alternative/data:

 = 01,  = 0  = 094

How often do we see observations “more extreme” than the alternative, when data is generated

by the null?

(Note the paper is still guilty of “how I thought of it” organization. Do better in your

papers!)

-FIGURE 1: Joint distribution of ̂ ̂

-Yes,  is insignificant.

- is significant! It seems it does make a difference whether you test  = 0 or whether you

test  = −01.
-Notice the upward sweep, resulting from the positive correlation of ̂ ̂

-This is uncomfortable. Why do we have to choose one test or the other?
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FIGURE 2 long run coefficients.



1− 
− 

1− 
= 1

 −  = 1

1− 0 = 1

-This is attractive because there are no multidimensional issues. This holds in each sample.

If you look at one  by the identity you know exactly what the other one does, so the test

statistic is the same either way you look at it.

-Also, these are more interesting (I think so). They express fractions of dp variance explained.

I think the interesting question about the world is the value of   

 not the underlying

  . Result: significant. Table 4 numbers

FIGURE 3 Joint distribution of  ;;

Identities — let’s look at   leaving out . This is the conventional way to look at it.

Notice the negative correlation between ̂ and ̂, coming from negative correlation in the

errors.

 = 1 −  +  thus diagonal lines show us the { } corresponding to sample ,and

greater and less — NE of the diagonal line is above the   Figure 1 horizontal line

Similarly, holding (1− ) constant shows where the long run coefficients reject.

Notice the rejecting  all come with very low . A “joint” test, do you see high  and 

no lower than 0.94 really rejects.

This explains the   results. The rejecting  came with low  so  was unaffected.

 and  are negatively correlated. It’s much harder to produce a high  without a low

,That’s why  = (1− ) is less likely to reject and why  =  + − 1 is less likely
to reject.

You can’t just pick arbitrarily small regions and then reject.

1) Economics. What’s interesting? What is “more extreme” than data? Most ̂  01 have

low ̂ Thus, 
1−  1,   0, (See Figure 3) so dividends are predictable, and volatility

tests are “some of each”.

Plea that the Economically interesting result is , “how often is   1” The combination

of small and persistent, so adds up to lots of price volatility, is the puzzle. Thus, I would

count

̂ = 1 ̂ = 004 ̂ = 0 

 = 004(1− 096) = 1

“just as surprising” as what we see, but

 = 064  = 02 

 ≈ 02(1− 096× 064) = 0204 = 05
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i.e. 50/50 as “closer to the null”.

2) Statistics. why does testing  involve other paramters? Answer: because the null is not

{ = 0  = anything} { = 0 kk  1}. We’re adding prior information. We’re adding
prior information that   ̄. If you move phi up, things get worse. The likelyhood region

is then negatively sloped in   space, as the  and  tests do (Figure 3).

Higher phi Table. This Emphasizes how upper limits on prior for phi are crucial.

If I allowed  = 104, we could have both  = 0 and  = 0.

LONG HORIZON FORECASTS

Table 6, Figure 5. Previous long run results were not long enough.

But long horizon is the same as bd. It’s not about long horizons really, it’s about economic

distance from the null.  is not correlated with phi.

Warning: a) forecasting long horizons from a VAR is dangerous b) it’s much less dangerous

with cointegrating vectors, since these dominate the long run

GOYAL AND WELCH

“Out of sample” Goyal welch statistic. See Figure 6 — this is expected to happen! GW is

not a “test.” It is a warning against using this in real time for market timing. There is no

fight. We can decide that  = 1,

 = 0 is our view of the world with high probability, yet,

GW is very likely to be right about "out of sample" one period return forecasting, since we

don’t know  and  separately very well.

Bias (hidden point in table 7 and last paragraph of 1571) A good “bias corrected” estimate

is  = 099,  = 005,  = 0. But this still has 

 = 1!

The downward bias in phi is exactly the same pheonmenon as the upward bias in br.

In SUM. (Introduction) Key features are 1) the identity 2) the correlation structure of the

errors (hard to avoid) 3) Hence the correlation structure of the   4) the (well, my) prior

that   1

Read the last three paragraphs! The implications of return forecastability have only begun

to be appreciated in finance, portfolio theory (add this fall’s merton state variables, WSJ

article), corporate finance, accounting, ....

Thoughts

- You can see how useful the linearized present value model is. Big picture: stock analysis is

stuck in one period thinking; bonds are moving to analyzing prices (affine models). Stocks

need that too, but the models need to be tractable.
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Why not..

What about the 1 period model

 = (+1+1)





= (+1

+1



)

or multiperiod

 = 

∞X
=1

++





= 

∞X
=1

+

+



= 

∞X
=1

Ã
Y

=1

+−1+
+

+−1

!

Isn’t that what the author of Asset Pricing should recommend?

-Answer 1: the linearized identity helps us to relate prices, dividends and the vast empirical

work on one period returns. The linearized model lets us relate P/D, ER, ED. Why ER

varies will still be a mystery (Need M, 1=E(MR) for what is ER needs M) This is the final

goal though.

- Answer 2: Eventually, we need to get the whole business away from one period returns.

The covariance of daily returns with daily consumption growth is not the Rosetta stone for

asset pricing. The covariance of the stream of dividends my portfolio gives me with the

stream of consumption flows I support with it; that’s what matters.
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