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Abstract

We present, a consumption-based model that explains a wide variety of dy-
namic asset pricing phenomena, including the procyclical variation of stock
prices, the long-horizon predictability of excess stock returns, and the counter-
cyclical variation of stock market volatility. The model captures much of the
history of stock prices from consumption data. The model explains the short
and long-run equity premium puzzles despite a low and constant riskfree rate.
The results are essentially the same whether we model stocks as a claim to the
consumption stream or as a claim to volatile dividends poorly correlelated with
consumption.

The model is driven by an i.i.d. consumption growth process, and adds
a slow-moving external habit to the standard power utility function. These
features generate slow countercyclical variation in risk premia. The model
posits a fundamentally novel description of risk premia: Investors fear stocks
primarily because they do poorly in recessions unrelated to the risks of long-run
average consumption growth.
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I. Introduction

A number of empirical observations suggest tantalizing links between asset mar-
kets and macroeconomics. Most importantly, equity risk premia seem to be higher at
business cycle troughs than they are at peaks. Excess returns on common stocks over
Treasury bills are forecastable, and many of the variables that predict excess returns
are correlated with or predict business cycles (Ferson and Merrick 1987, Fama and
French 1989). The volatility test literature mirrors this conclusion: price-dividend
ratios move procyclically, but this movement cannot be explained by variation in
expected dividends or interest rates, indicating large countercyclical variation in ex-
pected excess returns (Campbell and Shiller 1988a,b, Shiller 1989, Cochrane 1991a,b).
Estimates of conditional variances of returns also change through time (see Bollerslev,
Chou, and Kroner 1992 for a survey), but they do not move one-for-one with esti-
mates of conditional mean returns. Hence the slope of the conditional mean-variance
frontier, a measure of the price of risk, changes through time with a business cycle
pattern (Harvey 1989, Chou, Engle, and Kane 1992).

As yet, there is no accepted economic explanation for these observations. In
the language of finance, we lack a successful theory and measurement procedure for
the fundamental sources of risk that drive expected returns. In the language of
macroeconomics, standard business cycle models utterly fail to reproduce the level,
variation, and cyclical co-movement of equity premia.

We show that many of the puzzles in this area can be understood with a simple
modification of the standard representative agent consumption-based asset pricing
model. The central ingredient is a slow-moving habit, or time-varying subsistence
level, added to the basic power utility function. As consumption declines toward the
habit in a business cycle trough, the curvature of the utility function rises, so risky
asset prices fall and expected returns rise.

We model consumption growth as an i.i.d. lognormal process, with the same mean
and standard deviation as postwar consumption growth. Our model can accommo-
date more complex consumption processes, including processes with predictability,
conditional heteroskedasticity, and non-normality. But these features are not salient
characteristics of consumption data. More importantly, we want to emphasize that
the model generates interesting asset price behavior internally, not from exogenous
variation in the probability distribution of consumption growth. In this respect, our
approach is the opposite of that of Kandel and Stambaugh (1990, 1991), who use
fairly standard preferences, but derive some of these phenomena from movement over
time in the conditional moments of consumption growth.

We choose our model’s functional form and parameters so that the riskfree interest
rate is constant. We do this for several reasons. First, there appears to be only limited



variation in the real riskfree rate in historical US data, and the variation that does
exist is not closely related to the business cycle or to movements in stock prices.
Second, we want to show how the model can explain stock market behavior entirely
by variation in risk premia without any movement in the riskfree rate. Third, many
habit persistence models with exogenous consumption give rise to wild variation in
riskfree rates. When production is added, consumers smooth away the consumption
fluctuations. (See Jermann 1998 for a quantitative example.) A constant riskfree
rate is consistent with a linear production technology, and therefore suggests that our
results will be robust to the addition of an explicit production sector.

We generate artificial data from the model, and then we check that the artificial
data display the patterns found in the empirical literature. The model replicates
the level of the riskfree rate, the mean excess stock return (the equity premium),
and the standard deviation of excess stock returns. Most importantly, the model fits
the dynamic behavior of stock prices. It matches the level and volatility of price-
dividend ratios and the long-horizon forecastability of stock returns, and it produces
persistent variation in return volatility. It replicates the finding of the volatility
test literature that the volatility of stock price-dividend ratios or returns cannot be
accounted for by changing expectations of future dividend growth rates. The model
also accounts for much of the observed low correlation between stock returns and
consumption growth. Despite a lognormal forcing process, the model predicts non-
normal, negatively skewed stock prices and returns, with occasional crashes that are
larger than the booms. We feed the model actual consumption data, and we find that
the price-dividend ratios and returns predicted by our model provide a surprisingly
good account of fluctuations in stock prices and returns over the last century. All these
interesting and seemingly unrelated phenomena are in fact reflections of the same
phenomenon, which is at the core of the model: a slowly time-varying, countercyclical
risk premium.

Habit formation

Habit formation has a long history in the study of consumption. Deaton and
Muellbauer (1980) survey early work in the area, while Deaton (1992) gives a more
recent overview. Constantinides (1990), Ryder and Heal (1973), and Sundaresan
(1989) are major theoretical papers on the subject. Habit formation captures a fun-
damental feature of psychology: repetition of a stimulus diminishes the perception of
the stimulus and responses to it. Habit formation can explain why consumers’ re-
ported sense of well-being often seems more related to recent changes in consumption
than to the absolute level of consumption. In macroeconomics, habit persistence can
explain why recessions are so feared even though their effects on output are small
relative to a few years’ growth.



Our habit specification has three distinctive features. First, we specify that habit
formation is external, as in Abel’s (1990) “catching up with the Joneses” formula-
tion, or Duesenberry’s (1949) “relative income” model. An individual’s habit level
depends on the history of aggregate consumption rather than on the individual’s own
past consumption. This specification simplifies our analysis. It eliminates terms in
marginal utility by which extra consumption today raises habits tomorrow, while
retaining fully rational expectations.

Second, we specify that habit moves slowly in response to consumption, unlike
empirical specifications in which today’s habit is proportional to last period’s con-
sumption (for example, Ferson and Constantinides 1991). This feature produces slow
mean reversion in the price-dividend ratio, long-horizon return forecastability and
persistent movements in volatility.

Third, we specify that habit adapts nonlinearly to the history of consumption.
The nonlinearity keeps habit always below consumption and keeps marginal utility
always finite and positive even in an endowment economy. In many models including
Sundaresan (1989), Ferson and Constantinides (1991), Heaton (1995) and Chapman
(1997), consumption can fall below habit with undesirable consequences. Abel (1990,
1998) keeps consumption above habit by changing utility from u(C' — X) to u(C/X),
but this specification eliminates changing risk aversion. Most importantly, the non-
linear habit specification is essential for us to capture time variation in the Sharpe
ratio (mean to standard deviation of returns) and a constant risk free rate.

IT. The model

A. Preferences and technology
Identical agents maximize the utility function
1SS 1-
EZét(Ct - X)) - 1.
t=0 L—v

(1)

Here X, is the level of habit, and ¢ is the subjective time-discount factor.

It is convenient to capture the relation between consumption and habit by the
surplus consumption ratio
Cy — X,
Sp= —.
Cy

The surplus consumption ratio increases with consumption. S; = 0 corresponds to
an extremely bad state in which consumption is equal to habit; S; approaches 1 as
consumption rises relative to habit. The local curvature of the utility function, which



we write as 7, is related to the surplus consumption ratio by

_ _Ctucc(otuXt) o Y

=

Uc(Cth) B St.

Thus, low consumption relative to habit, or a low surplus consumption ratio, implies
a high local curvature of the utility function.

To complete the description of preferences, we must specify how the habit X,
responds to consumption. Through most of our analysis we use an external habit
specification in which habit is determined by the history of aggregate consumption
rather than the history of individual consumption. Define

Si = o (2)

where C'* denotes average consumption by all individuals in the economy. We specify
how each individual’s habit X; responds to the history of aggregate consumption
C® by specifying a process for S¢. Using lower-case letters to denote the logs of
corresponding upper-case letters, s? evolves as a heteroskedastic AR(1) process,

st = (1= 9)5 + st + A (s7) (e — ¢ — g).- (3)

¢, g and 5 are parameters. We call A (s¢) the sensitivity function, and we specify
it further below. Substituting (2) into (3) we see that (3) does in fact describe how
habit X, adjusts to the history of consumption {C’f,j}. Though this adjustment is
nonlinear, to a first approximation near the steady state s, equation (3) implies that
habit z; itself adjusts slowly and geometrically to consumption ¢ with coefficient
¢. In equilibrium, identical individuals choose the same level of consumption, so
Cy = C7, S = S¢. Therefore, we drop the a superscripts in what follows where they
are not essential for clarity.

Having described tastes, we now turn to technology. We model consumption
growth as an i.i.d. lognormal process,
Aciy1 = g+ Vegp1; Vg1 ~ dii.d. N(0,0?). (4)
It is convenient, though not essential, to use the same value g for the mean consump-
tion growth rate and the parameter g in the habit accumulation equation (3).

We can regard equation (4) as the specification of the endowment process and close
our model as an endowment economy. In principle, this interpretation does not imply
a loss of generality: If the statistical model of the “endowment” is the same as the



equilibrium consumption process from a production economy, the joint asset price-
consumption process is the same whether the economy is truly an endowment or a
production economy. In practice, however, the asset pricing predictions of many habit
persistence economies are strongly affected by the specification of technology. In many
endowment economies with habits and random walk consumption, riskfree rates vary
a great deal, as the varying surplus consumption ratio gives rise to strong motives for
intertemporal substitution. When production is added to these economies, consumers
make strong use of production opportunities to smooth marginal utility over time.
The interest rate variation is quieted down but the equilibrium consumption process
moves far from a random walk (Jermann 1998). However, we will pick the functional
forms and parameters of our model to generate a constant real riskfree rate. Therefore,
we can also close the model with a linear technology,

Kt+1 = Rf(Kt + Et - Ct)
A€t+1 = g+ Vgy1 Vgy1 ~ 1.1.d. N(O, 0'2),

where K; and F; denote the capital stock and an exogenous endowment or addi-
tive technology shock, respectively. This specification results in exactly the same
process for consumption and asset prices, which suggests that the model’s consump-
tion and asset pricing implications will not be much affected if the model is closed
with any standard concave specification of technology that gives easy opportunities
for intertemporal transformation and thus a roughly constant riskfree interest rate.
B. Marginal utility

Since habit is external, marginal utility is
UC(Ct,Xt> = (Ct — Xt)_7 = St—’th—’y
The intertemporal marginal rate of substitution is then

Ue (Cry1, Xit1) _5 (St+1 Cii1 ) -
Ue (Ct7 Xt) Sy C '

It is related to the state variable s; and the log consumption innovation v, by

M1 =6

Myyy = 6G e brm=sctoet) — §G=7 @D+ 1A sl (5)

We can now calculate moments of the marginal rate of substitution and find asset
prices.

Slope of mean-standard deviation frontier

The slope of the conditional mean-standard deviation frontier can be found from
the conditional moments of the marginal rate of substitution. Following Shiller (1982),
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Hansen and Jagannathan (1991) show that the first order condition 0 = E; (M1 Ry, ;)
for an excess return R®implies that the Sharpe ratio of any asset return must obey

Et( §+1) Ut(Mt+1) Ut(Mt+1) (6)
or(Rf14) Ey(Myy1) = Ef(Miyr)’

where p; denotes a conditional correlation. In our model, M is conditionally lognor-
mal, so we can find' the largest possible Sharpe ratio by

= —pe(Myi1, R7 (1) <

Ei(Riy)

252 s¢)]? 3
a2 Vo (By) = (67 [ 1) * =~ o[l + A(sy)). (7)
all assets ‘it+

This formula helps us to specify the model. To produce a time-varying Sharpe ratio,
A(s) must vary with s. To produce risk prices that are higher in bad times, when s
is low, A(s) and hence the volatility of s must increase as s declines.

Riskfree interest rate

The real riskfree interest rate is the reciprocal of the conditionally expected sto-
chastic discount factor,
R{ - 1/Et (Mt+1) .

Using equation (5) and the lognormality of consumption growth, the log riskfree rate

1S
2 2

rf = —In(8) + 79 = 1L = 9)(s¢ = 5) — o= [+ A(s)]". ®)

The (s; — 5) term reflects intertemporal substitution. If the surplus consumption
ratio is low, the marginal utility of consumption is high. If there were no shocks to
consumption, marginal utility would fall as the surplus consumption ratio reverts to s.
The consumer would then like to borrow, driving up the equilibrium riskfree interest
rate. We can interpret the last term in equation (8) as a precautionary savings term.
As uncertainty increases, consumers are more willing to save, and this willingness
drives down the equilibrium riskfree interest rate.

In the data, we notice relatively little variation in riskfree rates. This means that
the serial correlation parameter ¢ must be near one, and/or A(s;) must decline with
s¢ so that uncertainty is high when s is low and the precautionary saving term offsets

1For lognormal M with mean y and standard deviation o,

o(M) _ EQI) —EQM)? _ rim — i | o

E(M) E(M) enta?/z




the intertemporal substitution term. A(s;) declining with s, is the same condition we
need to get countercyclical variation in the price of risk. We now use this insight to
pick the functional form of A(s;).

C. Choosing the sensitivity function A(s;)

We have not yet specified the functional form of A(s;). We choose A(s;) to satisfy
three conditions. 1) The riskfree interest rate is constant. 2) Habit is predetermined
at the steady state s, = 5. 3) Habit is predetermined near the steady state, or,
equivalently, habit moves non-negatively with consumption everywhere.

We have already discussed the motivation for a constant riskfree interest rate.
We further restrict habit behavior to keep the specification close to traditional and
sensible notions of habit. We normally think that it takes time for others’ consumption
to affect one’s habits. In our model habit cannot be completely predetermined, or
a sufficiently low realization of consumption growth would leave consumption below
habit, in which case a power utility function is undefined. Hence, we require that
habit is predetermined, but only at and near the steady state. Finally, the notion
of habit would be strained if we allowed habit to move in the opposite direction as
consumption moves.

These three considerations lead us to a restriction that must hold between the
steady state surplus consumption ratio S and the other parameters of the model,
namely

g _ g
S=o0 T3 5 (9)
and they lead us to a specification of the sensitivity function,
)\(St) = { (1/5) 1-2 (St - .§) - ]-7 St < Smax (10)
0 St Z Smax

where Spax is the value of s; at which the square root in (10) runs into zero,
Smax = 8 + E (1 — 52) ) (11)
2

In the continuous time limit, the s; process never attains the region s > Syax-

This specification achieves the three objectives set out above. First, simply plug-
ging the definition of S, (9), and the definition of A(s;), (10) into the formula for the
riskfree rate, (8), we see that the riskfree rate is a constant,

=) g (3) T =-m) - 209 (12
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Second, differentiating the transition equation (3), we obtain

d A A
ﬁ:l_&%l_&. (13)
dciiq e S+l — 1 e st — 1
The latter approximation holds near the steady state. To obtain dz/dc = 0 at s; = 3,
we require

AE) = (1/8) — 1. (14)

Evaluating equation (10) at s, it satisfies this condition. Third, to ensure that habit
is predetermined in a neighborhood of the steady state, we add the requirement

d (do
ds \ dc

This condition also implies that habit moves non-negatively with consumption every-
where, since dz/dc is a U-shaped function of s. Taking the derivative d/ds (dx/dc) of
the expression in (13) and setting it to zero at s = §, we obtain

=0.

S§=S8

N (3) = —(1/8).

Equation (10) satisfies this condition. Since the functional form of A (s;) was already
determined by the first two conditions, this condition determines the constraint (9)
on the parameters of the model.

The left panel of Figure 1 plots the sensitivity function A(s;) against the surplus
consumption ratio, given the parameter values described below. A(s;) is a shifted
square root function of —s;, so A increases to infinity as s; declines to minus infinity,
or as S; = e declines to zero in the figure. As we discussed above, a negative
relationship between A (s;) and s; is needed to produce a constant riskfree interest
rate and a countercyclical price of risk. Where A(s;) hits zero, we see the upper
bound of the surplus consumption ratio, Spax-

The right panel of Figure 1 plots the derivative of log habit with respect to log con-
sumption, as given by equation (13). The figure verifies that habit does not move con-
temporaneously with consumption—dz /dc = 0—at and near the steady state, marked
by a vertical line, and that habit responds positively to consumption—dz/dc > 0—
everywhere. As the surplus consumption ratio declines to zero, or increases to its
upper bound (the vertical dashed line), log habit starts to move one for one with log
consumption, in order to keep habit below consumption or the surplus consumption
ratio below its upper bound.
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Figure 1. Sensitivity function A(s;) and implied sensitivity of habit = to
contemporaneous consumption. The vertical solid line in this and subse-
quent figures shows the steady-state surplus consumption ratio S. The
dashed vertical line shows the maximum surplus consumption ratio Spax.

Time-variation in the riskless interest rate

Different functional forms for A(s;) can of course generate riskless interest rates
that vary with the state variable. For example, a natural generalization is to choose
A(sy) so that the interest rate is a linear function of the state s;, rather than a

constant,
rl=rl —B(s;,—3). (15)

The only difference this modification makes to the previous analysis is that the relation
between parameters in equation (9) generalizes to

a o ’y
S=olT—05m (16)

This generalization of the model produces a rich term structure of interest rates. Since
the riskfree rate is a linear function of the state variable s;, and since from equation
(10) the conditional standard deviation of s; is very close to a square-root function
of s, this generalized model is similar to square-root models of the term structure
such as the model of Cox, Ingersoll and Ross (1985). The generalized model also
implies that yield spreads are functions of the state variable s;, so they forecast stock
and bond returns about as well as the dividend-price ratio. However, adding interest
rate variation in this way has very little effect on the stock market results on which
we focus below. The working paper version of this article (Campbell and Cochrane



1994) includes explicit calculations of the term structure and term structure forecasts
of stock and bond returns.

D. Prices of Long-Lived Assets

Pricing a consumption claim

We start by modeling stocks as a claim to the consumption stream. This is the
simplest specification; it is common in the equity premium literature, allowing an
easy comparison of results; and it is the natural definition of the “market” or “wealth
portfolio” studied in finance theory. From the basic pricing relation and the definition
of returns,

P+ D
l=E MR R = %:
t

the price-dividend or equivalently the price-consumption ratio for a consumption
claim satisfies c

P t+1 P

— = F, | M, 1 . 17

C, (s¢) t[ 1 E + Cron (5¢41) (17)

The surplus consumption ratio s; is the only state variable for the economy, so the
price-consumption ratio is a function only of s;. We substitute for M;,; from (5),
consumption growth from (4) and then solve this functional equation numerically on a
grid for the state variable s;, using numerical integration over the normally distributed
shock v;41 to evaluate the conditional expectation. Given the price-consumption
ratio as a function of state, we calculate expected returns, the conditional standard
deviation of returns, and other interesting quantities.

Imperfectly correlated dividends and consumption

The growth rates of stock market dividends and consumption are only weakly
correlated in US data. This fact suggests that it may be important to model divi-
dends and consumption separately, rather than to treat them as a single process. We
separate dividends and consumption in a particularly simple way in order to avoid
adding state variables to our model. Surprisingly, we find that prices and returns of
dividend claims behave very much like those of consumption claims, despite the low
correlation between consumption and dividend growth rates.

We specify an i.i.d. process for dividend growth, imperfectly correlated with con-
sumption growth. Letting D denote the level of dividends and d the log of dividends,
we specify

Adyyy = g+ wep1; W ~id.d. N(0,02), corr(wy,v;) = p. (18)
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The price-dividend ratio of a claim to the dividend stream then satisfies

P, D P,
Ht (St> = Et [Mt+1 5+1 (1 + as (St+1)>] . (]_9)
t t

We calculate this price-dividend ratio as a function of state in much the same manner
as the price-consumption ratio of the consumption claim. The Appendix, Campbell
and Cochrane (1998b) available from the authors, gives details of the calculation.

The correlation between consumption growth and dividend growth in the model
(18) is the same at all horizons, and dividends wander arbitrarily far from consump-
tion as time passes. It would be better to make dividends and consumption cointe-
grated. We have explored a model in which the log dividend-consumption ratio is
i.i.d., and the correlation of one period dividend and consumption growth rates is
low as in the data. This model behaves so similarly to the basic consumption-claim
model that graphs of the solutions are indistinguishable. A cointegrated model with a
persistent log dividend-consumption ratio would be more realistic, but this modifica-
tion would require an additional state variable. Any such model is likely to make the
consumption and dividend claims even more alike than in our specification (18), since
it increases the correlation between dividends and consumption at long horizons.

E. Choosing Parameters

We compare the model to two data sets: 1) postwar (1947-1995) CRSP value-
weighted NYSE stock index returns, three-month treasury bill rate, and per-capita
nondurables and services consumption; and 2) a century-long annual data set of

S&P500 stock and commercial paper returns (1871-1993) and per-capita consumption
(1889-1992) from Campbell (1998).

We choose the free parameters of the model to match certain moments of the
postwar data. Table 1 summarizes our parameter choices. We take the mean and
standard deviation of log consumption growth, g and o, to match the consumption
data. We choose the serial correlation parameter ¢ to match the serial correlation
of log price-dividend ratios. We choose the subjective discount factor ¢ to match
the riskfree rate with the average real return on Treasury bills. Since the ratio of
unconditional mean to unconditional standard deviation of excess returns is the heart
of the equity premium puzzle, we search for a value of v so that the returns on the
consumption claim match this ratio in the data.

11



Table 1. Parameter choices.

Assumed parameters
Mean consumption growth* g, % | 1.89
Standard deviation of consumption growth* o, % | 1.50
Log riskfree rate* r/, % | 0.94
Persistence coefficient* ¢ | 0.87
Utility curvature v | 2.00
Standard deviation of dividend growth* o, % | 11.2
Correlation between Ad and Ac, p | 0.2

Implied parameters

Subjective discount factor* 6 | 0.89

Steady state surplus consumption ratio S | 0.057
Maximum surplus consumption ratio Spy. | 0.094

Starred (*) table entries are annualized values, e.g. 12g, /120, 12r7, ¢*2, §*2
since the model is simulated at a monthly frequency.

We take the standard deviation of dividend growth, o, from the CRSP data
as well. Assigning a value p for the correlation between dividend growth and con-
sumption growth is a little more tricky. If dividend growth were uncorrelated with
consumption growth, a claim to dividend growth would have no risk premium. How-
ever, correlations are difficult to measure, because they are sensitive to small changes
in timing or time aggregation Campbell (1998) reports correlations in postwar US
data varying from 0.05 to almost 0.25 as the measurement interval increases from
1 to 16 quarters, and correlations in long-run annual US data varying from almost
0.2 to just over 0.1 as the measurement interval increases from 1 to 8 years. In the
very long run, one expects the correlation to approach 1.0, since dividends and con-
sumption should share the same long-run trends. Furthermore, these point estimates
are subject to large sampling error. The usual standard error formula 1/ VT for a
correlation coefficient is 0.1 in a century and 0.15 in postwar data, so we cannot
convincingly reject zero, or accurately measure economically interesting correlations
of 0.2 or 0.3. Given these results, we do not try to match a particular correlation
but choose a baseline correlation of 0.2, to show that the model works well even with
quite low correlation between consumption and dividends. The results are insensitive
to the precise value of this correlation.
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ITI. Solution and Evaluation

In this section we solve the model numerically and characterize its behavior. Then,
we simulate data by drawing shocks from a random number generator, and we show
how the simulated data replicate many interesting statistics found in actual data.
Finally, we feed the model historical consumption shocks to see what it tells us about
historical movements in stock prices.

A. Asset Prices and the Surplus Consumption Ratio

Stationary distribution of the surplus consumption ratio

Figure 2 presents the stationary distribution of the surplus consumption ratio. The
figure plots the distribution of the continuous time version of the process, calculated
in the Appendix. This distribution is an excellent approximation to histograms of
the discrete time process for simulation time intervals of a year or less. With this
stationary distribution in mind, and the slow mean-reversion of the state variable,
one can get a good idea of the behavior of other quantities plotted against the state
variable S;.

Distribution of surplus consumption ratio

I I I )
Q.00 Q.02 0.04 Q.06 0.08 0.10

Surplus consumption ratio

Figure 2. Unconditional distribution of the surplus consumption ratio.
The solid vertical line indicates the steady state surplus consumption ratio
S, and the dashed vertical line indicates the upper bound of the surplus
consumption ratio Spax.
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The plot verifies that the unconditional distribution is well-behaved: it does not
pile up at the boundaries, or wash out. The distribution of the surplus consump-
tion ratio is negatively skewed. The surplus consumption ratio spends most of its
time above the steady state value S, but there is an important fat tail of low surplus
consumption ratios. We shall refer to a low surplus consumption ratio as a “reces-
sion” and a high surplus consumption ratio as a “boom”. Thus the model predicts
occasional deep recessions not matched by large booms.

Price-dividend ratios and the surplus consumption ratio

Figure 3 presents the price-dividend ratios of the consumption claim and the divi-
dend claim as functions of the surplus consumption ratio. These are the central quan-
tities for our simulations; all other variables are calculated from the price-dividend
ratio.

Price / dividend ratios
28

24 | @ P/C, Consumption claim
8—— P/D, Dividend claim

20

P/C, P/D

. . . . |
0.00 0.02 0.04 0.06 0.08 0.10
Surplus consumption ratio S = (C—X)/C

Figure 3. Price-dividend ratios as functions of the surplus consumption ratio.

The price-dividend ratios increase with the surplus consumption ratio. When
consumption is low relative to habit in a recession, the curvature of the utility function
is high, and prices are depressed relative to dividends. Since the price-dividend ratios
are nearly linear functions of the surplus consumption ratio, and the distribution of
the surplus consumption ratio is negatively skewed, the distribution of price-dividend
ratios inherits this negative skewness despite i.i.d. lognormal consumption growth.

Interestingly, the price-dividend ratio of the dividend claim is almost exactly the
same as the price-dividend ratio for the consumption claim despite the very low (0.2)
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correlation of dividend growth with consumption growth. Dividend growth is much
more volatile than consumption growth, so the regression coefficient 8 = poaq/oac
of dividend growth on consumption growth is roughly one. The systematic or priced
components of the two assets are similar, and therefore so are their prices.

Conditional moments of returns

Figure 4 presents the expected consumption-claim and dividend-claim returns
and the riskfree interest rate as functions of the surplus consumption ratio. As con-
sumption declines towards habit, expected returns rise dramatically over the constant
riskfree rate.

Expected returns and risk free rate
40 -

35

©—— Expected return, consumption claim
B—— Expected return, dividend claim
30 4—— Risk free rate

25

Ey r and rf, annualized percent

L L L 1 == J
0.00 0.02 0.04 0.06 0.08 0.10
Surplus consumption ratio S = (C—X)/C

Figure 4. Expected returns and riskfree rate as functions of the surplus
consumption ratio.

Figure 5 presents the conditional standard deviations of returns as functions of the
surplus consumption ratio. As consumption declines towards habit, the conditional
variance of returns increases. Thus the model produces several effects that have been
emphasized in the ARCH literature: highly autocorrelated conditional variance in
stock returns, a “leverage effect” that price declines increase volatility, and counter-
cyclical variation in volatility.

In Figure 4, the expected return of the dividend claim is almost exactly the same
as that of the consumption claim. In Figure 5 the dividend claim has a noticeably
higher standard deviation than the consumption claim, but the same dependence on
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the surplus consumption ratio. The return on the dividend claim is

R Piyr + Diyy Pii1/Diyr + 1 " Diq
o P, P,/D, D,

(20)

The expected returns are nearly identical because the price-dividend ratio and price-
consumption ratio are nearly identical functions of state, and dividend and consump-
tion growth are not predictable. The conditional standard deviation of the dividend
claim inherits the same dependence on state through the nearly identical P/D term,
but adds the extra, constant, standard deviation of dividend growth.

Conditional std. deviation of returns
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Figure 5. Conditional standard deviations of returns as functions of the surplus
consumption ratio.

Conditional Sharpe ratios

Comparing Figures 4 and 5, we see that conditional means and conditional stan-
dard deviations are different functions of the surplus consumption ratio, so the Sharpe
ratio of conditional mean to conditional standard deviation of excess returns varies
over time. To get a precise measure, Figure 6 presents the Sharpe ratio as a function
of the surplus consumption ratio. The top line is the maximum possible Sharpe ratio,
calculated from the Hansen-Jagannathan bound, equation (7).

The consumption claim nearly attains the Sharpe ratio bound, implying that it is
nearly conditionally mean-variance efficient. The consumption-claim model has only
one shock. Hence the only reason the consumption claim (or any claim whose return
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depends on the single shock) is not exactly conditionally mean-variance efficient is
that it is nonlinearly related to the shock. For the consumption claim, the effects of
such nonlinearity are slight.

Slope of conditional mean — standard deviation frontier

annualized

Slope By Rfyq / oy REp,

I I I I )
0.00 0.02 0.04 0.06 0.08 0.10

Surplus consumption ratio (C—X)/C

Figure 6. Sharpe ratios as functions of the surplus consumption ratio.

The dividend claim has a slightly higher mean return and a substantially higher
standard deviation, since there is a second dividend growth shock as well as the con-
sumption (discount-rate) shock. Hence, the dividend claim has a somewhat lower
Sharpe ratio, and is less conditionally efficient. However, considering that the divi-
dend payoff is only correlated 0.2 with the consumption claim payoff, it is surprising
how close the Sharpe ratios are. Looking at the dividend claim return equation (20),
most of the variation in the dividend-claim return is due to changing risk premia and
hence changing price-dividend ratios common to both assets, not to the volatility of
the payoff itself.

The Sharpe ratios of both securities increase substantially when the surplus con-
sumption ratio declines. In our model recessions are times of low consumption rela-
tive to habit, low prices, somewhat higher standard deviations of returns, very much
higher expected returns, and correspondingly high Sharpe ratios.

The top line of Figure 6 is also interesting as a characterization of the discount
factor. The conditional mean of the discount factor is constant, so this line plots
the conditional standard deviation of the discount factor. That conditional standard
deviation moves with the state variable s; and so inherits its positive serial correlation.
Thus, our economic model generates a time-series model for the second moment of the
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stochastic discount factor, like an ARCH model rather than an ARMA model. The
Hansen-Jagannathan analysis shows that this form is necessary in order to generate
a time-varying risk premium.

B. Statistics from Simulated Data

We simulate 500,000 months of artificial data to calculate population values for
a variety of statistics. In order to facilitate a comparison with historical data, we
simulate the model at a monthly frequency, and then construct time-averaged artificial
annual data. As in the actual data, we average the level of consumption in each year.
We form annual returns by taking the product of intervening monthly returns. The
annual price-dividend ratio is its value at the end of the year.

We report corresponding historical statistics with some trepidation. On the one
hand, it is useful to get some quantitative idea of the target. On the other hand,
the historical statistics are the subject of an enormous empirical literature, and the
point estimates of simplified statistics from one particular sample do little justice
to the econometric and data-handling sophistication of that literature. Also, esti-
mates should be accompanied by standard errors, but useful measures of sampling
uncertainty require a far more sophisticated analysis than space allows here. This
is particularly true since our model suggests that Peso problems will be important;
stock returns in the model are non-normally distributed and strongly influenced by
the small possibility of a severe crash or depression.

Means and standard deviations

Table 2 presents means and standard deviations in simulated data, with the cor-
responding statistics from our two historical data sets. The first four moments match
the postwar statistics exactly, because we chose parameters to fit those moments. In
particular, we picked the parameter v = 2.00 to exactly match the Sharpe ratio for
log returns of 0.43 in postwar data. The model also matches the Sharpe ratio for
simple returns of 0.50. A v value of about 4 matches the dividend claim Sharpe ratio
to the postwar value without much effect on other statistics.

We chose to match the postwar time series because they are a significantly harder
target. The long historical time series feature a much larger standard deviation of
consumption growth, a lower Sharpe ratio, and a higher risk free rate. v of about 0.7
matches the 0.22 Sharpe ratio for log returns in the long term data, with little effect
on the other statistics.

It is noteworthy that the model can match the mean and standard deviation of
excess stock returns, with a constant low interest rate and a discount factor 6 = 0.89
less than one, by any choice of parameters. These moments are the equity premium
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and riskfree rate puzzles, which we discuss below.

Table 2. Means and standard deviations of simulated and historical data.

Consumption Dividend Postwar Long

Statistic claim claim data data

E(Ac) 1.89* 1.89 1.72

o(Ac) 1.22* 1.22 3.32

E(rl) 0.094* 0.094 292

E(r—r")/o(r —rf) 0.43* 0.33 0.43 0.22
E(R— R /o(R— R/) 0.50 0.50

E(r—r7) 6.64 6.52 6.69 3.90

o(r—rf) 15.2 20.0 157 18.0

exp[E(p — d)] 18.3 18.7 24.7 21.1

o(p—d) 0.27 0.29 0.26 0.27

The model is simulated at a monthly frequency; statistics are calculated
from artificial time-averaged data at an annual frequency. Asterisks (*)
denote statistics that model parameters were chosen to replicate. All
returns are annual percentages.

The remaining moments were not used to pick parameters, so we can use them
to check the model’s predictions. The choice of v matches the ratio of mean return
to standard deviation, but it says nothing about the level of mean and standard
deviation of returns. The ratio 0.43 could be generated by a mean of 0.43% and a
standard deviation of 1%. In fact, the mean and standard deviation of excess returns
are almost exactly equal to the corresponding values in the postwar data, using either
the consumption claim or the dividend claim.

The mean price-dividend ratio is a bit below that found in postwar data, but
this statistic is poorly measured because the price-dividend ratio is highly serially
correlated. The standard deviation of the price-dividend ratio is almost exactly the
same as found in the data. In this sense, the model accounts for the volatility of stock
prices, a point we discuss in more detail below.

Autocorrelations and cross-correlations

Table 3 presents autocorrelations and Table 4 presents cross-correlations from our
simulated data, along with sample values from the historical data.
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Table 3. Autocorrelations of simulated and historical data.

Lag (years)
Variable Source 1 2 3 5 7
p—d Consumption claim | 0.87 0.76 0.66 0.51 0.39
Dividend claim | 0.87 0.76 0.66 0.51 0.39
Postwar data | 0.87 0.77 0.70 0.41 0.04
Long data | 0.78 0.57 0.50 0.32 0.29

r —rf Consumption claim | -0.06 -0.05 -0.04 -0.02 -0.02
Dividend claim | -0.05 -0.04 -0.03 -0.02 -0.01

Postwar data | -0.11 -0.28 0.15 0.02 0.10

Long data | 0.05 -0.21 0.08 -0.14 0.11

S plre, ¢ ;) Consumption claim | -0.06 -0.11 -0.15 -0.20 -0.26
Dividend claim | -0.05 -0.09 -0.12 -0.14 -0.18

Postwar data | -0.11 -0.39 -0.24 0.18 0.13

Long data | 0.05 -0.16 -0.09 -0.28 -0.15

|r|  Consumption claim | 0.09 0.09 0.09 0.07 0.05
Dividend claim | 0.05 0.05 0.05 0.04 0.03

Postwar data | 0.08 -0.26 -0.10 -0.08 0.05

Long data | 0.13 0.09 0.07 0.14 0.15

The model values are based on time-aggregated annual values using a
monthly simulation interval. Data are all annual. The third block of
numbers is a partial sum of return autocorrelations out to lag j.

We picked the parameter ¢ to generate the 0.87 first order annual autocorrelation
of the price-dividend ratio seen in the table. Higher autocorrelations decay slowly, as
in the data. The dividend claim generates exactly the same autocorrelation pattern.
This is not a surprise given that the dividend claim and consumption claim price-
dividend ratios are almost identical.

Returns display a series of small negative autocorrelations that generate univariate
mean reversion (Fama and French 1988a, Poterba and Summers 1988). The negative
autocorrelations of returns also generate observations that price changes tend to be
reversed.

Since individual long-term autocorrelations are small and poorly measured, the
empirical literature focuses on a number of clever statistics designed to better measure
univariate mean reversion. One such statistic is the partial sum of autocorrelation
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coefficients, shown in the table. The model replicates the pattern and the rough
(poorly measured) magnitude found in the data. The prewar data show a stronger
mean-reverting pattern, which is a well known feature of this statistic.

The autocorrelation of absolute returns reveals long-horizon conditional heteroske-
dasticity in the model. The ARCH literature (for a summary see Bollerslev, Chou,
and Kroner 1992) finds higher values for these autocorrelations in high frequency
data, but values similar to our first-order autocorrelation at annual frequencies. The
ARCH literature has not noted the negative 2 and 3 year autocorrelations of absolute
returns in the postwar data, but these findings may be artifacts of simplistic technique
or sampling error. The dividend claim has a lower autocorrelation of absolute returns,
since its return is a noisier indicator of changes in the surplus consumption ratio.

Table 4. Cross-correlations of simulated and historical data.
Lag (years)
Variables Source 1 2 3 5 7
pt — dy, 7§, ;  Consumption claim | -0.35 -0.30 -0.26 -0.20 -0.15
Dividend claim | -0.28 -0.24 -0.20 -0.16 -0.12
Postwar data | -0.42 -0.25 -0.13 -0.35 -0.17
Long data | -0.20 -0.21 -0.10 -0.19 -0.08

ré,|rg, ;| Consumption claim | -0.09 -0.07 -0.06 -0.03 -0.03
Dividend claim | -0.06 -0.04 -0.04 -0.03 -0.02

Postwar data | -0.32 -0.14 0.10 -0.04 -0.08

Long data | -0.15 0.03 0.12 0.02 -0.01

py — dy,|rfy ;| Consumption claim | -0.49 -0.42 -0.37 -0.28 -0.21
Dividend claim | -0.36 -0.31 -0.27 -0.21 -0.16

Postwar data | -0.16 0.09 0.11 -0.05 0.02

Long data | -0.12 0.02 -0.06 -0.10 -0.05

The cross-correlation between the price-dividend ratio and subsequent excess re-
turns, shown in Table 4, verifies that the price-consumption ratio forecasts long-
horizon returns, with the right sign: high prices forecast low returns. Since high
prices forecast low returns for many years in the future, the forecastability of returns
increases with the horizon as we show next. The correlations are slightly smaller for
the dividend claim, since its return is slightly noisier.

The cross-correlations between the price-dividend ratio or returns and subsequent
absolute returns show that a low price-consumption ratio or a big price decline sig-
nal high volatility for many quarters ahead. This is the “leverage effect” that Black
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(1976), Schwert (1989), Nelson (1991) and many others have found in the data. As
with the univariate autocorrelation of absolute returns, the data seem to indicate
a somewhat shorter-lasting change in conditional variance than is predicted by the
model, at least as viewed by this simple statistic. Again, the dividend claim be-
haves very similarly to the consumption claim despite the very low 0.2 correlation of
dividend growth with consumption growth.

Long-horizon regressions

Table 5 presents long-horizon regressions of log excess stock returns on the log
price-dividend ratio in simulated and historical data. We use excess returns to em-
phasize that risk premia rather than riskfree rates vary over time. We see the classic
pattern documented by Campbell and Shiller (1988b) and Fama and French (1988b).
The coefficients are negative: high prices imply low expected returns. The coefficients
increase linearly with horizon at first, and then less quickly; the R? start low, but
then rise to impressive values. The model’s predictions for the consumption claim
match closely the postwar data. The coefficients for the dividend claim are about
the same, but the R? do not rise as fast since the dividend claim return contains the
extra dividend growth noise.

Table 5. Long-horizon return regressions

Horizon | Cons. claim Div. claim Postwar data Long data

Years) | 10xcoef. R? 10xcoef. R? 10xcoef. R? 10xcoef. R?
-2.0 0.13 -1.9 0.08 -2.6 0.18 -1.3 0.04
-3.7 0.23 -3.6 0.14 -4.3 0.27 -2.8 0.08
-5.1 0.32 -5.0 0.19 -5.4 0.37 -3.5 0.09
-7.5 0.46 -7.3 0.26 -9.0 0.55 -6.0 0.18
-9.4 0.55 -9.2 0.30 -12.1 0.65 -7.5 0.23

—
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Volatility tests

Papers in the volatility test literature have found that stock prices move far more
than can be explained by varying expectations of dividend growth and interest rates.
In our model, expected dividend growth and the riskless interest rate are constant
over time, so they explain none of the variation in stock prices. Therefore the model
implies an extreme version of the volatility test results.

To demonstrate this point, we replicate a volatility test in Cochrane (1991b) which
is closely related to the tests in Campbell and Shiller (1988a). A loglinearization of
the accounting identity 1 = R;;' Ry 1, with Ry = (Piy1 + Dyy1)/ P, implies that in
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the absence of rational asset price bubbles,

Var (p; — dy) ~ Z PjCOV (pe — di, Adyyj) — ZPjCOV (pe — di, 1e5) (21)

j=1 j=1

where p = (P/D)/[1+ P/D] and P/D is the point of linearization. The price-
dividend ratio can only vary if it sufficiently forecasts dividend growth and/or returns.

Table 6 presents estimates of (21), using 15 years of covariances to estimate the
sums in artificial data and in the two data samples. The point estimates in the
data find that more than 100% of the price-dividend ratio variance is attributed to
expected-return variation. A high price-dividend ratio signals a decline in subsequent
real dividends, so it must signal a large decline in expected returns. The forecast
dividend decline is not statistically different from zero, however. All of the price-
dividend ratio variance is accounted for, providing evidence against the view that
stock market volatility is driven by rational bubbles.

In the model, all variation in the price-dividend ratio is due to changing expected
returns by construction. To within the accuracy of the loglinear approximation, the
variance decomposition on artificial data reflects this fact.

Table 6. Variance decompositions

Sample Returns Dividends
Model, consumption claim | 100% 1%
Model, dividend claim 99% 3%
Postwar data 137% -31%
Long data 101% -10%

Table entries are the percentage of Var(p — d) accounted for by dividend
growth and returns, 100 x 1%, pCov (py — dy, 2445) /Var (py — dy) , @ =
Ad and —r respectively.

The correlation of consumption growth with stock returns

Equilibrium consumption-based models typically imply that consumption growth
and stock returns are almost if not perfectly correlated. For example, with log utility,
the return on the wealth portfolio equals consumption growth, ex-post, data point
for data point. This implication is the basis for many theoretical models in finance
that substitute portfolio returns for consumption growth. However, this implication
is seldom checked or used to test asset pricing models, for the obvious reason that

23



it is dramatically false. As Cochrane and Hansen (1992) emphasize, the actual low
correlation between stock returns and consumption growth lies at the heart of many
empirical failures of the consumption-based model.

In our model, consumption growth and consumption-claim returns are condition-
ally perfectly correlated, since consumption growth is the only source of uncertainty.
But the relation between consumption growth and returns varies over time with the
surplus consumption ratio. Hence the unconditional correlation between consump-
tion growth and returns is not perfect. The left hand panel of Figure 7 shows this
effect of conditioning information by plotting artificial data on consumption growth
vs. returns. For a given surplus consumption ratio, such pairs lie on a line, but the
slope of the line changes as the surplus consumption ratio changes. Therefore, the
consumption-return pairs fill a region bounded by two straight lines, each of which
corresponds to one limit of the surplus consumption ratio.

The right hand panel of Figure 7 plots the correlation of consumption growth
with returns in simulated annual data. As the figure shows, the addition of time-
aggregation further degrades the perfect conditional correlation between consumption
growth and returns.

Monthly returns vs. consumption growth Annual returns vs. consumption growth

Consumption Growth (%)
=)
Consumption Growth (%)
N

Figure 7. Left panel: simulated monthly consumption growth vs. monthly
consumption claim returns. Right panel: growth in simulated annual
consumption vs. annual consumption claim returns.

Table 7 presents several measures of the correlation between consumption growth
and stock returns. In the data, there is very little contemporaneous correlation be-
tween consumption growth and returns. However, returns are negatively correlated
with previous consumption growth and positively correlated with subsequent con-
sumption growth. The highest correlations are between returns and the next year’s
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consumption growth, 0.37 in postwar data and 0.49 in long-term data. Fama (1990)
interprets similar correlations of returns with output as evidence that returns move
on news of future cash flows.

Table 7. Correlation between consumption growth and stock returns

Model, monthly | Model, annual Data

Cons. Div. Cons.  Div. PW PW Long

Correlation | claim  claim | claim claim | quarterly annual annual
re, Aci_o 0.0 0.0 -0.16  -0.13 -0.05 -0.16  -0.05

re, Aci—q 0.0 0.0 -0.19  -0.15 -0.10 -0.34  -0.08

re, Acy 0.93 0.79 0.47 0.40 0.12 -0.05 0.09
re, Aciir 0.0 0.0 0.50 0.42 0.19 0.37 0.49
e, Aciio 0.0 0.0 0.0 0.0 0.15 -0.26 0.05

In our model, the unconditional correlation between monthly consumption-claim
returns and monthly consumption growth is 0.93. This value corresponds to the left
hand panel of Figure 7. It is less than the 1.0 of the standard time-separable model,
but much greater than the correlations we see in the data. In addition, there is no
correlation between returns and consumption growth at any lead or lag.

When we time-aggregate the artificial data to annual frequencies, the contempo-
raneous correlation drops to 0.47. Furthermore, time-aggregation produces a strong
positive correlation between returns and subsequent consumption growth, and a neg-
ative correlation between returns and previous consumption growth, the same sign
pattern that we see in the data.

Modeling stocks as a dividend claim further reduces the correlations. Since the
correlation of dividend growth with consumption growth is only 0.2 one might expect
still lower correlations, but again most return variation is driven by price variation,
so the extra dividend volatility has a relatively small effect.

Thus, the varying conditioning information in our model together with an explicit
accounting for time aggregation goes a long way towards resolving the puzzling low
correlation of consumption growth with returns, and towards explaining the correla-
tion between returns and subsequent macroeconomic variables. More state variables
and accounting for lags and errors in data collection are likely to further help to
account for the correlations of consumption with asset returns.

The correlation of the discount factor with consumption growth and stock returns

The static CAPM often does a better job of accounting for risk premia than the
power utility consumption-based asset pricing model. (Mankiw and Shapiro 1986.)
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It turns out that this is true in our artificial data as well, even though the data are
generated by a consumption-based model. Campbell and Cochrane (1998a) present
detailed calculations. We show the basic point here by calculating the correlation
between the true discount factor and consumption growth or stock returns. Discount
factor proxies that are better correlated with the true discount factor produce smaller
pricing errors for a given set of assets.

Table 8 presents the correlations. In monthly artificial data, the consumption
claim return is far better correlated with the true discount factor than is consumption
growth. Therefore, the static CAPM using the “wealth portfolio” return is a better
approximate model. Although the discount factor is conditionally perfectly correlated
with consumption growth, the unconditional correlation is low, because the surplus
consumption ratio varies. The stock return moves when the surplus consumption
ratio changes, and hence reveals more of the discount factor movement.

St

Table 8. Correlation between the discount factor M;,, = ¢ (Cé—tlﬁ)_vand
consumption growth, consumption claim return and dividend claim return.

Correlation of discount factor with
Consumption Consumption  Dividend

growth claim return  claim return
Monthly 0.90 0.99 0.83
Annual 0.45 0.99 0.80

We might expect the relative performance of the consumption based model to
deteriorate further at longer horizons. At longer horizons, there is more movement of
the surplus consumption ratio independent of consumption growth, and this move-
ment will be revealed by stock return variation since stock prices decline when the
surplus consumption ratio declines. Time aggregation further obscures the consump-
tion signal. Table 8 confirms this intuition: at an annual frequency the correlation
of the discount factor with time-averaged consumption growth has declined to 0.45,
while the correlation with the consumption-claim return is still 0.99.

At a monthly horizon, the dividend claim return is a poorer proxy than even
consumption growth, because dividend growth contains noise not correlated with the
discount factor. When we go to a longer horizon and introduce time aggregation in
consumption, however, even the dividend claim return is a far better discount rate
proxy than consumption growth. These annual results are the relevant ones because
actual monthly consumption data, unlike the simulated consumption data, are also
time-averaged and measured with error.
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C. Interpreting Historical Consumption and Stock Price Data

Instead of simulating artificial consumption data, we now feed our model actual
data on nondurables and services consumption per capita. Figure 8 presents the
postwar history of consumption and the habit level implied by our model, assuming
that habit starts at the steady state at the beginning of the sample.

The figure shows how habit responds smoothly to changes in consumption, trend-
ing up in the high growth 60’s and growing more slowly in the 70’s. Cyclical dips in
consumption bring consumption closer to habit. Our model will predict low price-
dividend ratios and high expected returns for those periods.

Postwar consumption and habit
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Figure 8. Nondurable and services consumption per capita and habit level
implied by the model, assuming that the surplus consumption ratio starts
at the steady state.

Figure 9 presents the model’s prediction for the price-dividend ratio of a consump-
tion claim, together with the actual price-dividend ratio on the S&P 500 index. The
prewar prediction is based on a calibration of the model to the long data set; it uses
the lower mean and higher standard deviation of consumption growth of that data
and a lower value of 7 = 0.7 to generate the lower Sharpe ratio in that data set. We
emphasize that the “model” line on the graph is produced using only consumption
data and no asset market data. A similar graph using the dividend claim rather than
the consumption claim is almost identical, since the predicted price-dividend ratio of
the dividend claim is almost exactly the same function of state as the price-dividend
ratio of the consumption claim.
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Figure 9. Historical price-dividend ratio, and model predictions based on
the history of consumption.

To our eyes, the model provides a tantalizing account of cyclical and longer-term
fluctuations in stock prices. When consumption declines for several years in a row,
coming nearer to our constructed habit, stock prices fall. Model and actual price-
dividend ratios fall in the sharp recessions of the late 19th and early 20th centuries,
and the model also captures the long term rise and then decline from 1890-1915.
The model accounts for the boom of the 1920s. The decline in consumption in the
Great Depression was so extreme that the model predicts an even larger fall in stock
prices than actually occurred. Then the model tracks the recovery during WWII, the
consumption and stock boom of the 60’s (though with a lag), the secular and cyclical
declines of the 70’s, and the consumption and stock market boom of the 80’s.

It is a little embarrassing that the worst performance occurs in the last few
years. Nondurable and services consumption growth was surprisingly slow in the
early 1990’s, bringing consumption near our implied habit level (Figure 8) so our
model predicts a fall in price-dividend ratios, rather than the increase we see in the
data. Possible excuses include a shift in corporate financial policy towards the re-
purchase of equity rather than dividend payments; an increase in the consumption of
stock-market investors that is not properly captured in the aggregate consumption
data, due perhaps to rising income inequality in the period or the demographic effects
of the baby boom generation entering peak saving years; and measurement problems
such as compositional shifts of consumption away from nondurables and services.
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D. Model intuition

The equity premium and riskfree rate puzzles

Our model is consistent with the equity premium and a low and constant risk free
rate. It is worth seeing how the model resolves these long-standing puzzles.

With power utility M1 = [(Cyy1/C;)™", a constant risk free rate, and i.i.d.
lognormal consumption growth with mean ¢ and standard deviation o, the Hansen-
Jagannathan or Sharpe ratio inequality (6) specializes to

E(R) 27
<y/erot — 1= 22
and the log interest rate is
f 20°
ry = —In(B) +ng —n" - (23)

2

To explain a (gross return) Sharpe ratio of 0.50 with o = 1.22%, the power utility
model needs a risk aversion coefficient n > 41 by equation (22). This is Mehra
and Prescott’s (1985) “equity premium puzzle.” One can object to n > 41 as an
implausibly large value of risk aversion, and we discuss this interpretation below.

More importantly, a high value of n makes the term 7g in the riskfree rate equation
very large. Thus, n = 41, g = 1.89% means we need 5 = 1.90 to get a 1% riskfree
rate. Imposing § < 1, one predicts a riskfree rate of more than 90% per year! Weil
(1989) emphasizes this “riskfree rate puzzle” and Cochrane and Hansen (1992) discuss
the level and variability of risk free interest rates in high-risk-aversion models.

Despite its intuitive implausibility, one might argue that setting § = 1.90 resolves
the riskfree rate puzzle. However with § = 1.90 and n = 41, equation (23) implies that
the riskfree interest rate should be quite sensitive to the mean consumption growth
rate, which is not the case. Real interest rates do not vary across time or countries by
40 times the variation in predicted or average consumption growth. (Equivalently, one
must assume wild cross-country variation in patience [ to save the model. Campbell
1998 reports such estimates.)

Our model also features high curvature. Though the power v = 2 is low, the
surplus consumption ratio is also low, so local curvature n = —Cue./u. = /S is
high, 35 at the steady state, and higher still in low surplus consumption ratio states.
However, our model does not predict a sensitive relation between consumption growth
and interest rates. Equation (12),
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shows that the power parameter v = 2, much lower than utility curvature /S, con-
trols the relationship between average consumption growth and the riskfree interest
rate.

Thus we avoid the riskfree rate puzzle: an intuitively plausible 6 = 0.89 < 1 is
consistent with the low observed real interest rate; and the model predicts a much
less sensitive relationship across countries or over time between mean consumption
growth and interest rates. Furthermore, the time-varying riskfree rate version of
our model (Campbell and Cochrane 1994) produces a riskfree rate that varies over
time as a function of the surplus consumption ratio, while consumption growth is
i.i.d. Therefore, this model predicts no time-series relationship at all between interest
rates and expected consumption growth rates, consistent with the great difficulty the
empirical literature has found in documenting any such relation in the data.

In order to remove the tension between equity premia as in (22) and risk free rates
as in (23), our model uses non-time separable preferences to distinguish intertemporal
substitution and risk aversion. Epstein and Zin (1989), Weil (1989), Kandel and
Stambaugh (1991), and Campbell (1996) use non-state separable preferences to the
same effect, but do not generate time-varying risk aversion.

Our solution to the riskfree rate puzzle has one other important advantage. Abel
(1998) highlights the danger of accounting for an equity premium by a term premium.
If a model assigned a high premium to the interest-rate exposure of stock cash flows
and long-term bond cash flows alike, it would account for the equity premium of
stocks over short-term bonds, but it would counterfactually predict high expected
returns for long-term bonds as well. Since interest rates are constant in our model,
long-term bonds earn exactly the same returns as short-term bonds, and the entire
equity premium is a risk premium, not a term premium.

The long-run equity premium

The equity premium puzzle is a feature of long as well as short horizons. Con-
sumption is roughly a random walk at any horizon, so the standard deviation of
consumption growth grows roughly with the square root of the horizon. The negative
autocorrelation of stock returns means that k—year return variances are somewhat
less than k times one year return variances, so the market Sharpe ratio grows if any-
thing faster than the square root of the horizon. (MaCurdy and Shoven 1992, Siegel
1994, Campbell 1996).

In our model, the k-period stochastic discount factor is

Stk Crik > -

Mt = 5k( S, C,

(24)
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Equation (6) implies that the standard deviation of this discount factor must increase
roughly with the square root of the horizon to be consistent with the long-run equity
premium, and even faster to generate the negative autocorrelation of stock returns.

One can think of our model as a member of a large class that adds a new state
variable S;.1 to the discount factor. However, most extra state variables, such as
recessions, labor, and instruments for time-varying expected returns (“shifts in the
investment opportunity set”) are stationary. Hence, the standard deviation of their
growth rates eventually stops growing with horizon. At a long enough horizon, the
standard deviation of the discount factor is dominated by the standard deviation of
the consumption growth term, and we return to the equity premium puzzle at a long
enough run. One could of course (and many models that explain the short run equity
premium do so) posit positive serial correlation in consumption growth, so that long-
run consumption growth is much more volatile than annual consumption growth. But
we don’t see this in the data.

Our model has a pure random walk in consumption, yet it produces negative
autocorrelation in returns and therefore high Sharpe ratios at all horizons. How does
it accomplish this feat with a stationary state variable S;?7 The answer is that while
S, is stationary, S; ' is not. S; has a fat tail approaching zero (see Figure 2), so the
conditional variance of S, grows without bound. We can demonstrate this behavior
using the formula for the distribution of S given in the Appendix: As s — —oo, the
leading terms in the distribution are

fs) = 6—7\S|—275\/ﬂ

We can integrate polynomials multiplied by this expression, so s is a covariance-
stationary process with a well-defined unconditional mean, variance and all higher
moments. S = e’ is also well-behaved. However, while S7 has a finite unconditional
mean, since e 7 f(s) is integrable, S™7 does not have a finite unconditional variance
since e=2° f(s) ~ €7*| explodes as s — —oo0.

While the distinction between stationary S and nonstationary S~ seems initially
minor, it is in fact central. Any model that wishes to explain the equity premium
at long and short runs by means of an additional, stationary state variable must
find some similar transformation so that the equity premium remains high at long
horizons.

A recession state variable

Equation (24) emphasizes that our model makes a fundamental change in the way
we understand risk premia. Consumers do not fear stocks because of the resulting
risk to wealth or to consumption per se; they fear stocks primarily because stocks
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are likely to do poorly in recessions, times of low surplus consumption ratios. While
(Ci41/Ch) " and (Sy41/S:)” " enter symmetrically in the formula, we know that the
volatility of (Ci;1/C)”" is so low that it accounts for essentially no risk premia.
Therefore, it must be true, and it is, that variation in (S, 1/S;)” " is much larger, and
accounts for nearly all risk premia. In the language of Merton (1973), variation across
assets in expected returns is driven by variation across assets in covariances with
recessions far more than by variation across assets in covariances with consumption
growth.

At short horizons, S;,; and Cj;; move together, so the distinction between a
recession state variable and consumption risk is minor; one can regard S as an am-
plification mechanism for consumption risks in marginal utility. At long horizons,
however, S;,; becomes less and less conditionally correlated with Cy . Sy depends
on Cy, relative to its recent past, but the overall level of consumption may be high or
low. Therefore, (unlike Rietz’s 1988 model of a small probability of a very large neg-
ative consumption shock), investors fear stocks because they do badly in occasional
serious recessions unrelated to the risks of long-run average consumption growth.

Nonstochastic analysis

It is common in growth theory to abstract from uncertainty and compare data from
actual economies to nonstochastic models. Many stochastic business cycle models
study small deviations from nonstochastic steady states, which are thought to well-
describe means. Our model offers an interesting laboratory to study the accuracy of
this sort of approximation.

Equation (8) for the riskfree rate,
2 2
_ Yo
r{ = —In(8) + 79 —7(1 = §)(s1 — 5) — —
highlights one important danger of nonstochastic analysis. In our model, the second
to last intertemporal substitution term exactly offsets the last precautionary savings
term in order to produce a constant interest rate. Absent the precautionary sav-
ings effect of a changing A(s;), interest rates would vary a great deal with the state
variable s; in our model. A researcher who analyzed data from our economy with a
nonstochastic version of the model would be puzzled by the stability of the riskfree
interest rate. Precautionary savings are not a second order effect.

[1 + )‘(St)]2 )

A nonstochastic analysis also have trouble with the fact that price-dividend ratios
are finite. At our parameter values, the consumption growth rate (1.89%) is about
double the interest rate (0.94%). Thus, a risk-neutral or certainty version of our
economy predicts an infinite price of the consumption and dividend streams. Only
the risk-corrected prices are finite.
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IV. Some Microeconomic Implications

In this section, we address several of the most important objections to the model:
that it seems not to allow for any heterogeneity across consumers, that it assumes
implausibly high risk aversion, and that it relies on an external habit rather than the
more common internal-habit specification.

At heart, all three objections have to do with potential application of the model to
microeconomic data. This is not our chief concern in this paper. Our goal, ambitious
enough, is to find representative agent preferences that explain the joint behavior
of aggregate consumption and stock returns. These representative agent preferences
could take the same form as the underlying preferences of individual agents, but they
could also result from aggregation of heterogeneous consumers with quite different
preferences. As one example, Constantinides and Duffie (1996), building on Mankiw
(1986), show how to disaggregate any representative agent marginal utility process,
including ours, to individual agents with power utility and low risk aversion in in-
complete markets by allowing the cross-sectional variance of idiosyncratic income to
vary with the posited marginal utility process. Nonetheless, we find external habit
formation appealing as a description of individual preferences, and the representative
agent model is clearly more compelling if its preferences can result from aggregation
of individuals with similar preferences. Therefore, we now briefly consider whether
the external habit model makes sense for microeconomic data.

A. Heterogeneity

Our identical agent model, with parameter values such that habit is only about 5%
below consumption, seems initially to be inconsistent with cross-sectional variation
in wealth and consumption. If everyone has the same habit level, then poor people
with consumption more than 5% below average would have consumption below habit
which makes no sense in our power specification.

In fact, however, our model can at least aggregate under complete markets with
heterogenous agents and heterogeneous groups. While these aggregation results are
not as general as one might like—a standard problem in representative-agent models—
it is still reassuring that many of the simple aggregation arguments for power utility
apply, so the model is not automatically inconsistent with the wide cross-sectional
variation of individual consumption and wealth. As usual in such results, the trick
is to maintain identical growth in marginal utility while allowing some heterogeneity
across individuals in levels of consumption, utility or marginal utility.

We can allow many different reference groups with different levels of wealth by
letting each agent’s habit be determined by the average consumption of his reference
group rather than by average consumption in the economy as a whole. Then poor
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people with low consumption levels have the same surplus consumption ratio as rich
people with high consumption, since their reference groups also have low consump-
tion. Each agent still has an identical power utility function of the difference between
his consumption and his habit, and each group’s consumption growth still moves in
lockstep. With identical surplus consumption ratios and consumption growth rates,
marginal utility growth is unchanged despite the heterogeneity in group consump-
tion levels. In the Appendix, we show algebraically that the representative agent
preferences are the same as those of the individuals in this economy.

We can also allow some individual heterogeneity. Suppose each agent i receives
an endowment C? which is determined from the aggregate endowment C¢ by

2=

Ci = (&/¢)

The weights &; vary across individuals. X; is determined from the history of aggre-
gate consumption via (3) as usual. By construction of the example, marginal utility
(Ci — X;)"" is proportional across agents, so marginal utility growth is the same
for all individuals despite the heterogeneity in consumption levels. Therefore, all
individuals agree on asset prices and have no incentive to trade away from their en-
dowments. To complete the example, we show in the appendix that C} is in fact the
average of C! in each period. The combination of group and individual heterogeneity
is straightforward, if algebraically unpleasant.

(CF = Xi) + Xi.

B. Risk Aversion.

Do we achieve a model consistent with the historical equity premium by assuming
implausibly high values of risk aversion? We have emphasized an interpretation of
the “equity premium puzzle” in terms of aggregate observations: high risk aversion is
undesirable in power utility models because it leads to counterfactual predictions for
interest rates and consumption growth, and our model resolves these problems. But
many people object to high risk aversion per se, even if it is consistent with all data on
asset prices and economic aggregates. This objection is therefore also fundamentally
a concern about microeconomic evidence.

Most intuition about risk aversion comes from surveys of individual attitudes
toward bets on wealth (including introspection, which is a survey with a sample size of
one). But survey evidence for low risk aversion can be hard to interpret. To avoid the
implication that we are all risk neutral to small zero-beta bets, surveys focus on very
large bets on wealth, outside ordinary experience, that consumers may reasonably
have trouble digesting. Building on this observation, Kandel and Stambaugh (1991)
subject some common thought experiments to a careful sensitivity analysis, and show
that high risk aversion is not as implausible as one might have believed. As is often the
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case, existing empirical microeconomic evidence does not give precise measurements
for input into macroeconomic models.

The agents in our model do display high risk aversion. However, we argue that
high risk aversion is inescapable (or at least has not yet been escaped) in the class
of identical agent models that are consistent with the equity premium facts at short
and long runs.

Risk aversion measures attitudes towards pure wealth bets, and is therefore con-
ventionally captured by the second partial derivative of the value function with respect
to individual wealth, holding any other state variables constant. In the appendix, we
define the value function for an individual in our economy. The value function depends
on individual wealth W, and on aggregate variables that describe asset prices or in-
vestment opportunities and the level of the external habit. We write it V (W,, W2, S¢).
Risk aversion is defined as the elasticity of value with respect to individual wealth:

rra; = —

Risk aversion, defined in this way, plays no direct role in describing our model at
the aggregate level. Individual wealth, aggregate wealth, and the surplus consump-
tion ratio always move together, so all partial derivatives of the value function are
involved in generating asset prices. Risk aversion is only (potentially) interesting in
a reconciliation with microeconomic data.

In the Appendix we calculate risk aversion for our model. Risk aversion is about
80 at the steady state (twice the curvature of about 40), rises to values in the hundreds
for low surplus consumption ratios, and is still as high as 60 at the maximum surplus
consumption ratio. Thus, risk aversion is countercyclical, like utility curvature, and
it is actually higher than utility curvature everywhere. This result can be understood
as follows. The envelope condition u. = Vi implies that risk aversion can be written
as utility curvature times the elasticity of consumption to individual wealth, holding
aggregates constant:

OlnViy(:)  dlnu.() y OlnC;  dInG (25)
oW,  ommC, omw, Tamw,

rra; = —

If date-t consumption moves proportionally to an individual wealth shock, risk aver-
sion is the same as utility curvature. In our model, consumption rises more than pro-
portionally to an increase in idiosyncratic wealth, so risk aversion rra; is larger than
curvature 7;. An increase in individual wealth allows the individual to permanently
increase his individual consumption over habit. This increase reduces the consumer’s
precautionary savings, implying that consumption increases more than proportionally
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at first. The consumer finances the extra initial consumption by increasing consump-
tion less than proportionally to the initial wealth shock in subsequent states with
high curvature and hence high contingent claim value.

Constantinides (1990) and Boldrin, Christiano, and Fisher (1996) present models
with low risk aversion that are consistent with the equity premium and low consump-
tion volatility at short horizons. In these models, consumers adjust consumption
slowly after an idiosyncratic wealth shock. 01n C;/0In W, in (25) is low, so risk aver-
sion is lower than the utility curvature that generates high Sharpe ratios through the
Hansen-Jagannathan logic. However, the slow and predictable rise in consumption
following a wealth shock means that these models do not fit the long-run properties
of the data. They match high long-run Sharpe ratios with high long-run consump-
tion volatility, volatility as high as that of returns. So far, no representative-agent
expected utility model with low risk aversion is consistent with high Sharpe ratios
and low consumption growth volatility at both short and long horizons.

C. Internal Habit Formation

So far we have specified an external habit: habits are set by everyone else’s con-
sumption. There are two reasons to calculate marginal utility and asset prices assum-
ing habits are internal rather than external. First, one wants to check that the social
marginal utility of consumption is always positive, despite the externality. Second,
it is interesting to know whether the external-habit specification is essential to the
results, or whether it is just a convenient simplification.

It is possible that external rather than internal habits make little difference to ag-
gregate consumption and asset pricing implications. With internal habits, consump-
tion today raises future habits, lowering the overall marginal utility of consumption
today. But asset prices are determined by ratios of marginal utilities. If internal
habits simply lower marginal utilities at all dates by the same proportion, then a
switch from external to internal habits has no effect on allocations and asset prices.
For example, we show in the Appendix that this occurs with power utility (C'—X)'™7,
a constant interest rate, and linear habit accumulation X; = 6322, #'C;_;. Hansen
and Sargent (1998) provide a similar example.

Our model adopts a nonlinear habit accumulation equation to generate an exact
random walk in consumption along with a constant riskfree rate. (In the above
linear habit example, consumption is close to but not exactly a random walk.) The
nonlinearity in the habit accumulation process is thus the only reason there is any
difference between the internal-habit and external-habit specification of our model.
Still, it is interesting to know how big is this difference.

When habit is internal, marginal utility at time ¢ in our model has extra terms
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reflecting the effect of time ¢ consumption on time t + j habits,

oU,

_ > . 00X
MUy = — = (Ct - Xt) T — E, Z(Sj (Ct+j - Xtﬂ-) puiniaiiar]
j=0

ac, (26)

0C;

In the appendix we show how to calculate marginal utility for the internal-habit ver-
sion of our model, closed as an endowment economy with random walk consumption.

Marginal utility, internal vs. external habit

Log marginal utility

I I I I I I I I I )
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Surplus consumption ratio S

Figure 10. Marginal utility with internal vs. external habits. In each
case, the marginal utility of consumption is given by MU; = C; " f(S);
the figure plots f(S;).

Figure 10 plots marginal utility as a function of state S in the internal and external
habit cases of our model. Several features are worth noting. First, internal-habit
marginal utility is always positive. This fact verifies that more consumption is always
socially desirable despite the externality. Second, internal-habit and external-habit
marginal utility are nearly proportional near the steady state S, as in the linear
example. This feature makes sense, since the nonlinear habit accumulation process
is approximately linear near the steady state. Third, internal-habit marginal utility
falls away from external-habit marginal utility as the surplus consumption ratio varies
far from the steady state. As we move farther from the steady state, changes in
consumption have larger impacts on future habits, even immediately (as we saw
above, dz/dc rises). The more an increase in consumption raises habits, of course,
the less it raises utility.
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The fact that this version of internal-habit marginal utility is nearly proportional
to external-habit marginal utility is encouraging for the robustness of our model to
the habit specification. We repeated all the above analysis, and found that many
features of the asset pricing predictions are maintained. The average excess return
and unconditional Sharpe ratio are not much affected, and price-dividend ratios and
expected returns vary with the state variable S about as before. However, the small
deviations from proportionality of marginal utility turn out to have some significant
effects on other predictions. Most importantly, this internal-habit version of our model
generates riskfree rates that are higher and vary with the state variable S, so the excess
return is a less sensitive function of the state variable and is less predictable.

However, in this comparison we close the internal habit model as an endowment
economy with a random walk in consumption rather than with a constant risk free
rate, we use the same parameter values that were selected to match moments with the
external habit specification, and we use the same habit formation process that was
reverse-engineered to deliver a constant risk free rate with random walk consumption
and external habit. The asset pricing results might be closer if one reverse-engineered
a different habit accumulation equation to deliver constant riskfree rates and random
walk consumption with internal habits, if one closed the existing model using a con-
stant interest rate, tolerating a possibly small predictability of consumption growth,
or if one picked parameters to match moments using the internal habit specification.

The predictions of internal- vs. external-habit models for individual behavior can
be quite different. One may be forced to the external habit view when one wishes to
integrate the lessons of aggregate and microeconomic data. If an individual with an
internal or “addictive” habit and the ability to save receives an idiosyncratic windfall,
he will increase consumption slowly and predictably. If an individual with an external
habit receives an idiosyncratic windfall, his consumption will rise immediately. (An
aggregate windfall can have different effects because it can cause asset prices to move,
which is why the distinction between internal and external habits may make little
difference to aggregate consumption behavior.) The vast literature on the permanent
income hypothesis finds that individual consumption changes are quite difficult to
predict. If anything, people spend windfalls even more quickly than predicted by the
simple PIH, not too slowly. Interestingly, in analyzing risk aversion we also found that
the model produces such “overreaction” to individual wealth shocks, dc¢;/0w; > 1,
due to a reduction in precautionary saving.

V. Conclusion

We have documented a broad variety of empirical successes for our consumption-
based model with external habit formation. We calibrate the model to fit the un-
conditional equity premium and riskfree interest rate. The model then generates
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long-horizon predictability of excess stock and bond returns from the dividend-price
ratio, and mean reversion in returns; it generates high stock price and return volatil-
ity despite smooth and unpredictable dividend streams; and it generates persistent
movements in return volatility. All of these phenomena are linked to economic fluc-
tuations: When consumption falls, expected returns, return volatility, and the price
of risk rise, and price-dividend ratios decline. The model predicts many puzzles that
face the standard power utility consumption-based model, including the equity pre-
mium and riskfree rate puzzles and the low unconditional correlation of consumption
growth with stock returns. The model is consistent with an even sharper long-run
equity premium puzzle that results from mean-reversion in stock prices, together with
low long-run consumption volatility. When we feed actual consumption data to the
model, the model captures the main secular and business cycle swings in stock prices
over the last century. The results are almost completely unchanged whether one uses
a consumption claim or claims to volatile dividends that are very poorly correlated
with consumption. The model predicts all this time variation despite a constant real
interest rate and constant conditional moments for consumption and dividend growth.

In order to match these features of the data, our model posits a fundamentally
novel view of risk premia in asset markets. Individuals fear stocks primarily because
they do badly in recessions (times of low surplus consumption ratios), not because
stock returns are correlated with declines in wealth or consumption.

The parameter values in our calibrated model imply that habits are only about 5%
lower than consumption on average. This degree of habit formation may seem rather
extreme. However, in this calibration we have used the sample period and the variable
definitions that give the smoothest consumption and highest equity premium, we have
ignored sampling variation and survivorship bias in mean returns, and we have not
used standard devices to boost the equity premium such as occasional extremely bad
states in the consumption distribution or frictions that concentrate stockownership on
a subset of the population. A less ambitious calibration exercise can produce similar
dynamic results with a considerably higher average surplus consumption ratio.

The model gives some hope that finance can productively search for fundamental
risk factors that explain at least the time-series behavior of aggregate stock returns,
rather than just relate some asset returns to other asset returns, leaving fundamental
issues such as the equity premium as free parameters. The model also suggests that
habit formation, or some other device to generate time-varying countercyclical risk
premia along with relatively constant riskfree rates, is an important element for pro-
ducing macroeconomic models with realistic production sectors that capture asset
price movements as well as quantity dynamics.
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Appendix to John Y. Campbell and John H. Cochrane, “By Force of
Habit: A Consumption-Based Explanation of Aggregate Stock Market
Behavior”

1. Pricing a dividend claim

Substituting the definition of D in equation (19), we obtain

P, P
Htt (s1) = GE; lMt+16wt+1 (1 + Dt;ll (St—i-l))] .

To avoid integrating over two random variables, v and w, we use the Law of [terated
Expectations to derive

Elg(v)e’] = E[E(g(v)e”|v)] = E[g(v) E(e”[v)].

Then, the dividend claim satisfies
P
D,

ow P,
(o= Gt [t (14 22 o)

We plug in the definition of M in terms of the shock v;1; and solve this equation
numerically on a grid, using a numerical integrator to evaluate the conditional expec-
tation over the normally distributed v, ;. .

Comparing this equation with the price-dividend ratio of the consumption claim,
(17), the difference lies in the term e3(1-,)7% in front and the term ef"+1 rather
than e¥+!' inside. We will use parameters o, ~ 0.10 at an annual frequency and
p = 0.2, so the first term is roughly €°°® which is very close to one. The term pZ«
is the regression coefficient of dividend growth on consumption growth. Although
dividend growth and consumption growth are poorly correlated, dividend growth is
much more volatile than consumption growth, so this regression coefficient is in fact
about one. This explains our finding that the price-dividend ratio of the dividend
claim is similar to the price-dividend ratio of the consumption claim.

2. Density of s in continuous time.

The continuous time version of the surplus consumption ratio transition equation
is
dSt = (1 — Qb) (5 — St) dt + )\(St)O'dBt. (28)
The forward equation implies that the stationary density ¢(s) of a diffusion ds =
p(s)dt + o(s)dB, if it exists, can be expressed as
z(s)

a(s) = [ z(s)ds
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where

s g #()
62 [ o2(v)

Evaluating the integral with

p(s) = (1—¢)(s —s)

& Y
S=0 —1_¢,
As) = % 1-2(s—3)—1, s< Smax
0 5 2 Smax

we have

Inz(s) = 2/8 dv;g((vv)) —2Ino(s)

o [t ()
= 2/ dng)\Q(U)—an)\(s)—ana

Express p(v) dv in terms of A\(v).

A(v)zé 1-2(v—135) -1
p(0) = (1=6) (5 —v) = (1 ) A 2
—dv —dv

NS s PR+l

—82[1 + A(v)] dX = dv

now the integral,

Inz(s) = 2/8 dv:;(vv)) —2Ino(s)

° 5 SP+A7 -1
= 2 [ #p+N-9 [2;;

(1—¢)S2/s[1+/\] S2[1+2X+ N\ -1

dA—2In\(s) —2Ino

dA—2In\(s) —2Ino

o? A2
Y g2 _ 32 | 1232

_ _%/ 142 H?QS TS A~ 2l A(s) - 2Ino
g
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2 dA—2InA(s) —2Ino

_ <
52_1+ (35 1)

Q2 Q2
e 3574+ 5%

(1—¢)S? / S% 14+ 2052 4 X252 £ \S2 — X +2)252 4+ \352

dA—2InA(s) —2lno

+ (352 — 1) In A\(s) + 352A(s) + W] —2InA(s) —2Ino

As)’
2

] — {ry (352 — 1) +2} InA(s) —2Ino.

As s — —o0, the A?and ) terms dominate, so

In z(s) = —v|s| — 2vS/2]s].

With the more general model that allows interest rate variation, we have the more
general version,

(3-57) 7061

tn#{s) = GU-¢) =B

yio? (p—1) [A(s)? S - 1] + — 2| InA(s).

Ga-g—BF| 2 TP

3. Aggregation
Aggregating heterogeneous groups

Suppose each individual 7 in group j has the same endowment, which is a constant
fraction of average consumption

CY =Cf =dlCy

where C7 is group javerage consumption, C{ = &3, C, N/is the number of
people in group j, C'*is economywide average consumption, C¢ = % >ij C¥. N is the
number of people, and o/ is a constant. We use the symbol C for the endowment,
but we have to verify that the consumer does not trade away from this endowment.
Once this is done, we can interpret C'as the post-trade allocation from a different
endowment stream. Everyone’s log consumption growth is the same,

ij i a a
C —CG1 =6 —CG_q.
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However, some groups have lower levels of consumption than other groups.

Habit for group j evolves from average consumption for group j, As before, we
describe habit formation via the evolution of the surplus consumption ratio for group
j» St = (0 — X{)/Cf by

st = (1= ¢)s+ sl + A(sl) (s —d — g).

Since consumption growth is the same for everyone, and starting from an initial state
with equal surplus consumption ratios, all surplus consumption ratios are the same,
st = s} Vi, j

where s¢ denotes the common value of the surplus consumption ratio.

Individuals in group 7 use group j habit. Therefore, marginal utility for individual
1 in group 7 is

MU} = (] - X7) " = (cisi) " = (cisp
Plugging in the endowment rule, we find that all marginal utilities move in lockstep,
MU} = (/) 7(CFS7) ™

Ratios of marginal utilities MU/ /M Utj_l are the same for all agents, and they all
agree on asset prices. They have no reason to trade away from the endowments.

Asset prices and aggregate quantities can be represented from the preferences of
a fictitious representative agent with marginal utility

MU, = (C252) ™.

Since all consumption growths and surplus consumption ratios are the same, the
common surplus consumption ratio evolves as it should,

st = (1= @)5+ ¢sf + A (s0) (cf —of — g).

C* is average consumption and S* is the average surplus consumption ratio. How-
ever, the “average habit” in the representative agent surplus consumption ratio is
a weighted average of individual group habits. Define X;* so that S¢ = (Cf —
X))/ Cg. Solving for X7,

X, xi
Xa —_ (a 1— ay _ altt -t
t C’t ( St) Ct Ct] ol
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Therefore, aggregate habit is a weighted average of individual habits.

. 1 X
N=g2o

,J

Aggregating heterogenous individuals

Each consumer i receives an endowment C} such that

&(Ci-x) =ecr-x)7.

Therefore, ‘
&1 (- x,) =g (Cr - X))
&' sici = e hseey, (29)
where Ci_ x
St = o

S% has the property that _ .
C'(1-95")=C"(1-95%
C'S'=C" - C* + C"S*
Substituting in (29),
&'ci-orraps| = ¢thsicr

{571/7 _ gi—l/’q

(€ -0 = b —sicr
Summing over ¢ and if we choose
_ 1 _
=S e

(2

we find that C%is in fact the average of the C°.

4. Risk aversion

To calculate risk aversion in our economy, consider an individual consumer. His
problem is to choose contingent consumption claims at each date and state, given ini-
tial wealth. Using a superscript a to distinguish individual and aggregate quantities,
and focusing on period 0 for notational simplicity, the consumer’s problem is

1 ue(CF, Xi)

C, < W. 30
UC(CS,Xt) =0 ( )

V(Wo, Wy, S5) = max Eyd 8'u(Ch, Xy) st Eg» 6
¢ t t
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The u.(C?% X)terms give asset prices. In equilibrium for a representative agent,
wealth is the value of a share of aggregate consumption,

(€2, X,)
=E 5t“0 bt ca
OZ u(Cg, Xy)

The extra state variables W® and S enter the value function in order to describe
asset prices and the level of external habit. Asset prices depend on the state variable
S¢. Then one of W2, C¢ or X, can describe the level of external habit X, that

appears in individual utility.
Risk aversion is defined as

WVWW . _8ln Vw(Wo, Wél, Sg)
VW n 81n VW

rra = —

Since it is defined from the value function, risk aversion is a property of preferences,
technology, and market structure, not a property of preferences alone. Risk aversion
measures aversion to purely idiosyncratic bets on wealth. Crucially, the increase in
wealth OW; occurs for the individual, holding all aggregate variables constant.

The envelope condition u. = V,, means that the risk aversion coefficient can be
written
81DVW(W0,W61,SS> Glnuc(C’g,X) 81110[) 8lnC’0

= — _ — g —_— ]_
rra oIn Viy amC, omw, amw,’ (31)

where we denote curvature by 7,

_ _Ctucc(ct;Xt) . _3lnuc(C’t,Xt)
=TT CL X omC,

In our model, 7, = v/S;. Finding risk aversion is therefore reduced to finding out how
much consumption at date 0 reacts to an idiosyncratic wealth change. To answer this
question, we have to find out how much consumption at all dates and states responds
to the wealth change and impose the budget constraint.

The consumer’s first order conditions for choice of C; are
uc(otv Xt) = _S(Wﬂa Wg: Sg) Uc(Cgv Xt)

where £ is a constant of proportionality. Differentiating to find the effect of a wealth
change,

aC, ¢

ucc(Cta Xt) aW[) GWO

uC(Cgu Xt)
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Simplifying and evaluating at C' = C',

_Ctucc(otaXt) WyoCy . W()af
UC(Ct,Xt> Ct8WO N 8WO

Therefore, the elasticity of date (state-) ¢ consumption with respect to initial wealth
is inversely proportional to curvature,

OlnW, M

0ln C, const

To raise marginal utility by the same proportion in each state, consumption rises by
a larger proportion in good states with low curvature. Evaluating this equation at
time 0, and comparing to the definition of risk aversion, we find that the constant is
time-0 risk aversion,

OlnC;  rrag
olnWy,  n,

(32)

To evaluate the constant, and therefore initial period risk aversion we differentiate
the budget constraint,
u(Cf, Xy) 0C
EO Z 5t t t) t
(CO ) XU) 8W0

+ Ue Ct;Xt> Ct (91nC’t

E, =1 4
025 (C8, X)) Wo dln W, (34)

Co, X,)
E 5tuc< to t C
020 e x)

tu (C2,X4)
EO Zt - -(C¢,X¢) Ct

Ey ¥, 6! ;ESa 5!

Thus the risk aversion coefficient is the price of the consumption stream divided by
the price of a security that pays the consumption stream times the inverse of the local
curvature of the utility function.

—1 (33)

rrag
Up

=W,

rrag =

In our model, marginal utility is u.(t) = (CyS;)~7, and utility curvature is 7, =
v/S;. Hence, the risk aversion coefficient is a function only of the surplus consumption
ratio S and it can be expressed as the price of a claim to C} divided by the price of
a claim to C}S;.

Ep 32208 (St1Ciij) 7Chy;

A . 35
Ey 3720 I(S145C115) 7 St45C145 (35)

rra; = rra(Sy) =1y X
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We calculate the price of the claim to C,S; on a grid like the other assets and find,
as explained in the text, that the risk aversion coefficient is greater than the utility
curvature coefficient. This behavior is illustrated in the figure below.

Risk aversion and curvature
200
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©—— Risk aversion

Utility curvaturey/S
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I ——
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Surplus consumption ratio S = (C—X)/C

Figure A1l. Risk aversion and utility curvature .

Equation (35) gives one explanation for this behavior. In a nonstochastic steady
state, this formula for risk aversion reduces to curvature, rra = /S . When there
are shocks, the price of C'S is lower than S times the price of C', for the simple reason
that S is procyclical (low in high marginal utility states) and hence risky.

The fact that we find risk aversion higher than curvature, together with equation
(31) means that consumption responds more than proportionally to wealth in every
state. This result might seem to be inconsistent with the budget constraint (33)
that “on average” consumption must move proportionally with wealth. However,
the budget constraint is not violated. First, “on average” is weighted by contingent
claims prices and the C/W or dividend/price ratio. Second, one should not confuse
0lnC;/0InW; in a different initial state Sy with 0C;;/0W, across potential future
states Siy;. In response to a change in W, equation (32) shows that consumption in
future dates (and states) increases in inverse proportion to local curvature,

1 8hlct+j _l@lnCt
N+ 81HWt —T]tatht'

Thus, although initial consumption responds more than proportionally to wealth
in every initial state, InC;/0InW; > 1 at every value of S;, future consumption
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responds less (0InCyy;/0In W, < 0InC;/01InW,) in future states with higher curva-
ture 7;4; (lower surplus consumption ratios) than the initial state. States with high
curvature also have higher contingent claims prices and higher C'/W (price/dividend)
ratios, and so count more in the budget constraint. There are enough such states to
satisfy the budget constraint.

5. Marginal utility with internal habit

Marginal utility for the internal-habit version of our model, with random walk
consumption, is given by the following procedure.

1) Find a function Z(S) from the recursive relation

Z(S) = Sy + 6G 9B { e (14 X (s)viga] Z(Span) } -

2) Marginal utility is then given by

8Ut —
aC, (Sm Ct) = G f(St)
F(S) = S 1+ Asy)]

~A(s1)0G VE {0 Z(S ) [1— ¢ — N (s)viga] [ St -

In the external case, marginal utility is given by C~7S77. In the internal case, marginal
utility is still given by a function separable between consumption and the surplus
consumption ratio, C~7f(.S). Beyond this observation, the formula is ugly, and we
are not able to provide much intuition.

The derivation consists of laboriously evaluating the derivatives 0.X,;/0C} in (26)
from the surplus consumption ratio evolution equation. To simplify the notation,
specialize to t = 0. The setup is

1=y
EO Zét Xt)
-7
s.t.
_ X,
St11 = (]. — Qb)S + QbSt + )\(St) [Ct+1 — Cp — g] ;S = hlSt = In <1 _ F) .
t
Marginal utility is
8UO " 8Xt
aC, = (Co—Xo) ' — {Z 6" (Cy — 2Co } (36)
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Examining (36), our task is simply to evaluate partial derivatives 0.X;/0Cy. To
do this directly, we have to iterate the state transition equation ¢ times and then take

the derivative. This is infeasible, but we can take the derivative and then iterate,
since an/aC[) = 8X2/8X1 X (9X1/8C[)

Write the s transition equation as

Xi) _ X _ X _
ln(l—CHl)—(1—¢)s+¢ln<1—0t>+)\(ln<1 C))[mot+1 InG, — g].

This defines a function
Xt = Xi1 (X, G, Gy).

Take a total derivative to get

1 X1 ¢ Xy
————dXy1 + ———dC = — dX; + ——5dC,
SnCin T g LcE T T TR TS
, X |
+)\ (St> l— S;bot dXt ;ioz dC;| [ln Ct+1 —1In Ct — g] + )\(St) l0t+1 dCt+1 Ct dC,;|

Isolating dX terms,

1
Si+1C1

X1 >\( t)
Sti1 Ct2+1 Ciy1

¢
- S,C,

dXi1+ [ ] dCiy1 =

1 [¢X ,
A [i ctt [1+XN(s)) InCopy —InCy — g)] — A(@] dC,.

Therefore, the required partial derivatives are

8Xt+1 . St+10t+1 ! _ _
= ¢ o (14 X(s;) (InCyyy —InC; — g)]
aXtH XtJrl
= — SiA
BCrn ~ Coy  riAl)
0X C X
8(?':1 = —StJrl_(t;;l lgtcft 1+ XN(s;) InCpy —InCy — g)] — )‘(St)]
The A(s) terms are
M) = o/1—2(s—5) — 1, §=0 |
S YT TAT

[]_ + )\/(St> (ln Ct+1 —In Ct — g)] dXt



i d 11 2 1
)\/(S) _ (S> _ - B _

ds 25 ica(s—5 Sfi-2(s—»)

Now we are ready to evaluate marginal utility. The first step is to express the
derivatives of the quantity X;, 0X;/0Cy , in terms of the derivatives of the function
Xir1(Xt, Cii1,Ct). ( We could introduce a notation f(Xy, Cii1,Cy) to keep the two
straight, but it’s not worth the bother). Xj is a function X;(Xo, C1, Cp), so Cy affects
X directly and via Xy. Thus, we get

o, L 0%, L TOX, 69X, 09X,
3, ~ (Co=Xo) " = (Co—Xo) T 5a — Bed (Cr = X) laoo T X, aool
L 0X, [0X, | 90X, 0X,
o2 B 4 0X9 1 10X
EBob™ (G2 = Xa) " 55, [aoo T ax, 800]
L 0X;0X, [0X,  0X, X,
o 3 _ Y
Bod™ (G = Xa) 5%, %, [800 T X, 800]

Simplifying a bit,

Uy oy %o C\ T [0X: 09X, 09X,
— 557 - _E
Cige, ~ %'~ % 5g, ~ Tbs (CO> [acﬁaxoaq)]
GO\ 0K, [0X) 09X, 0X,
_ 297y (=2
Fot52 (01 Co> X, laco T 9%, 000]
sia (03 C, 01> 70X X [0X: | 0X1 0%,
NG, 0 G 9X,0X, |9C, ' 9X,0C, |

Now, collect terms to write marginal utility as

o, 90X, ON"T [0X,  0X,0X,
C“ac =5’ <1 aco> E0{6(Co> " [aoﬁaxoaool}
where
o Cy an 2 (% Cg) 0X30X,
Wi =S 48557 <01> ax, % e ) axax T
W, is recursive:
] Cy\ 7 0%,
Wy = S5 + 6557 (02) T
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-
C’2> 0X, W.

_ o
Wi=s o (z) o
Now we have to handle the expectations. We want a recursive object that is a
function of the state variable s. We can use the random walk rule for consumption,
since will only evaluate marginal utility for the given consumption process, rather
than for arbitrary consumption paths. We are evaluating a formula for the derivative,
not taking a derivative at this stage.

By iterated expectations and since all the other terms in curly braces are func-
tions of no more than time 1 information, we can replace Wi with E;W7 in the last
expression for marginal utility,

8UO _ 8X0 Cl 7 8X1 8X1 8X0
vZ20 _ o _ 220 it}
“ag, =% <1 ) Fo {5 (CO> B(h) [800 T X, 800”

Substituting in the partial derivative formula 9X5,/0X; from above into the W
transition equation,

—
Wy =S77+6 <02> S50

— / P— —
C, (bSlCl 14+ XN(s1)(InCy —InCy — g)] Wh.

Wy =577+ 5¢lee<”>v2% [T+ N (51)ve] Wo.

1
Therefore,

Ev(Wh) = 577 + 866G E, {eﬂw% 14+ N(s1)vs) EQ(WQ)} .

1

If Eo(Ws) is a function of state Se, then Ey(W;) is a function of state S;. We use
the notation Z(St+1) = St+1Et+1Wt+1<St+1).

Now we have

v, . (. 0X, Coi\ " Z(Sis1) [0X1  0Xp1 0X,
VoYt oy [ YAt
Cae, =5 <1 act> Et{é( Ct> Se. | 0C, T ox, aq,

Note if we set all the X derivatives to zero we recover the external case C; 'S, .

JFrom above, the partial derivatives are given by

8Xt+1 - St+1Ct+1 /

09X, =¢ S,C, [1 + A (3t>Ut+1]
0X; B X,
ac, ~ o, oA
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X
C, [A(St) e

1+ X(savm]]

Plug the formulas for partial derivatives into the formula for marginal utility and
simplify.

oU,

CIogt = S (1 M) -
C't+1>7 Z(Si41) Ci B OXy /
Et {(S < Ct St+1 St+1 Ct )\(St) StCt [1 + A (St)'l}t+1]
Sy1C, X,
+¢% 1+ X(sJuea] | 5 St)\(stl)} }}
or o
Ciger =S (L4 Msn) -
C, - C,
Et {(S ( é’:1> Z(StJrl) éjtrl X
X, , , X
P\(St) - ?t(i [L+ N (s¢)vea] + % [1+ X (s¢)vega] af - SM(St—l)H }
or o
C’?a_CZ =S (1 + A(si1)) —

Cia 7 Xy Xy p
E, {5 ( o ) Z(Si1) [)\(st) 4 {% [E - St)\(stl)} _ gt Ct} 1+ A (st)vtﬂ]] }
or, finally,

ou,
t

y_ "t
Ce aC.

(1t M)~ {6 (S) " 210 s~ o) (14 X(sovm)]} |

The conditional expectations only require one-step ahead simulation and so we
can find them easily by numerical integration. Marginal utility is a function of state
St, S¢—1. The form is then reassuring: U.(C;) = Cy " f(S;, S;—1). It’s initially surprising
that A(s;_1) enters. That feature comes from the fact that X, changes as C; changes,
and A(s;_1) controls the sensitivity of X; to C;. In the continuous time limit, the
distinction between A(s;;1) and A(s;) vanishes. Therefore, we save a state variable
and approximate marginal utility as

aUt C’tJrl

yZZt _ gl _
Ct aCt t [1 + )\(St)] Et {(S < Ct

) 2 s — 0A) (1 + X(sovm)]}
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This approximation is exact when s; = s;_1.

6. An example in which internal and external habits are indistinguishable

Suppose habit accumulation is linear, and there is a constant riskfree rate or linear
technology equal to the discount rate, Rf = 1/6. The consumer’s problem is then

x L (C—Xx) =
maxZétﬁ S.t.Z(StCt = Zétet -+ W[), Xt = HZQb]thj
t=0 - t t j=1

where ¢; is a stochastic endowment. The first order conditions are
MU, = E, [MU,,]
where MU denotes marginal utility. In the external case, marginal utility is simply
MU, = (C; — Xy) 7. (37)
In the internal case, marginal utility is
MU, = (€= X7 =83 89/E (Cosy = Xeoy) (39)
=

The sum measures the habit-forming effect of consumption. Now, guess the same
solution as for the external case,

(Ct - *th)_’y = Et {(CtJrl - Xt+1)_’q : (39)

and plug in to (38). We find that the internal marginal utility is simply proportional
to marginal utility (37) in the external case,

056

) (C, — X,)77. (40)

Since this expression satisfies the first order condition MU; = E,MU,,{, we confirm
the guess (39). Ratios of marginal utility are the same, so allocations and asset prices
are completely unaffected by internal vs. external habit in this example.
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