
Notes on empirical methods

Statistics of time series and cross sectional regressions

1. Time Series Regression (Fama-French).

(a) Method: Run and interpret

Rei
t = αi + β0ift + εit t = 1, 2...T . for each i

(b) Estimates:

1. α̂, β̂ : OLS TS regression.

Rei
t = αi + β0ift + εit t = 1, 2...T for each i.

2. λ̂ : Mean of the factor,

λ̂ =
1

T

TX
t=1

ft = f̄ .

(c) Standard errors: If εit are independent over time.

1. OLS standard errors α̂i, β̂i.
2. λ̂ :

σ(λ̂) =
σ(ft)√

T

(d) Test α are jointly zero?

1. Answer: look at
α̂0cov(α̂, α̂0)−1α̂.

Precise forms,

α̂0cov(α̂)−1α̂ = T
£
1 + f̄ 0Σ−1f f̄

¤−1
α̂0Σ−1α̂˜χ2N

T −N −K

N

£
1 + f̄ 0Σ−1f f̄

¤−1
α̂0Σ̂−1α̂˜FN,T−N−K

Intuition. Rei
t = αi + β0ift + εit means that α̂i ≈ α + 1

T

PT
t=1 ε

i
t (except for

beta fitting). Thus cov(α̂) ≈ 1
T
Σ. The other terms correct for beta fitting. As

usual χ2 is asymptotic for any iid distribution, F is finite-sample for normal
ε.

2. Cross-sectional regression, two steps

(a) Procedure
E(Rei) = (γ) + β0iλ + αi i = 1, 2, ...N

1. TS (over time for each asset) to get βi,

Rei
t = ai + βift + εit t = 1, 2...T for each i.
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2. Run XS (across assets) to get λ.

E(Rei) = (γ) + βiλ+ αi i = 1, 2, ...N

3. TS vs. OLS CS.

iβ

( )iE R

Time-Series

Cross-section

Factor
(market for CAPM)

Rf

(b) Estimates:

1. β̂ from TS.
2. λ̂ slope coefficient in CS.

3. α̂ from error in CS: α̂ = 1
T

³PT
t=1R

e
t

´
− λ̂β̂. α̂ 6= a is not the intercept from

the time series regression any more.

(c) Standard errors.

1. σ(β̂) from TS, OLS formulas.
2. σ(λ̂). You can’t use OLS formulas. Errors α̂ are correlated, β are estimated.
Answer: With no intercept in XS,

σ2(λ̂) =
1

T

h
(β0β)

−1
β0Σβ(β0β)−1

¡
1 + λ0Σ−1f λ

¢
+ Σf

i
3. cov(α̂)

cov(α̂) =
1

T

¡
I − β(β0β)−1β0

¢
Σ
¡
I − β(β0β)−1β0

¢ ¡
1 + λ0Σ−1f λ

¢
(d) Test

α̂0cov(α̂, α̂0)−1α̂˜χ2N−K−1.

Warning cov(α̂) is singular; use pinv or eigenvalue decompose and only invert the
nonzero eigenvalues.

(e) Formulas with a free intercept

E(Rei) = γ + βiλ+ αi i = 1, 2, ...N
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X =

⎡⎣ 1 |
1 β
1 |

⎤⎦
σ2
µ∙

γ̂

λ̂

¸¶
=
1

T

∙
(X 0X)

−1
X 0ΣX(X 0X)−1

¡
1 + λ0Σ−1f λ

¢
+

∙
0 0
0 Σf

¸¸
cov(α̂) =

1

T

¡
I −X(X 0X)−1X 0¢Σ ¡I −X(X 0X)−1X 0¢ ¡1 + λ0Σ−1f λ

¢
3. GLS cross sectional regression.

(a) Formulas

λ̂ =
£
β0cov(α)−1β

¤−1
β0cov(α)−1E(Re)

λ̂ =
£
β0Σ−1β

¤−1
β0Σ−1E(Re)

see Asset pricing for σ(λ̂), cov(α̂)

(b) Theorem. If you include ft and Rf (0) as test assets, then Σ is singular in just
the right places and GLS CS = Time series

4. Fama-MacBeth Procedure

(a) Run TS to get betas.

Rei
t = ai + β0ift + εit t = 1, 2...T for each i.

(b) Run a cross sectional regression at each time period,

Rei
t = (γt) + β0iλt + αit i = 1, 2, ...N for each t.

(c) Estimates of λ, α are the averages across time

λ̂ =
1

T

TX
t=1

λ̂t; α̂i =
1

T

TX
t=1

α̂it

(d) Standard errors use our friend σ2(x̄) = σ2(x)/T

σ2(λ̂) =
1

T
var(λ̂t) =

1

T 2

TX
t=1

³
λ̂t − λ̂

´2
cov(α̂) =

1

T
cov(α̂t) =

1

T 2

TX
t=1

(α̂it − α̂i) (α̂jt − α̂j)

This is one main point. These standard errors are easy to calculate.

(e) Test
α̂0cov(α̂, α̂0)−1α̂˜χ2N−1.

Why don’t people do this?
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5. GMM. Of course you should be doing GMM and not assuming εt are iid over time,
right?

6. Testing one model vs. another (see longer description below)

(a) Example. FF3F.

E(Rei) = αi + biλrmrf + hiλhml + siλsmb

Drop size?
E(Rei) = αi + biλrmrf + hiλhml?

(b) Solution:“Orthogonalized factor”,

smbt = αsmb + bsrmrft + hshmlt + εt

We can drop smb from the three factor model if and only αsmb is zero. .

(c) Equivalently, we are forming an “orthogonalized factor”

smb∗t = αsmb + εt = smbt − bsrmrft − hshmlt

and drop if E(smb∗) = 0

(d) This must be equivalent to a proper test whether α0α declines, (not comparing
GRS statistics!)

Testing whether a factor is redundant.

Smb looks pretty marginal. Can we get by in our explanation ofmean returns (not necessarily
in our understanding of the return covariance matrix) with a simpler model that only uses
hml and rmrf? (Fama French might be perfectly right that smb is an important factor in
covariances, as industry factors are, but exposure to smb might not be important to explain
mean returns)

Lots of people think that we test for the importance of smb by looking at si t statistics,
mistaking the time-series regression that measures decomposition of variance for the im-
plied cross-sectional relation which measures the extent to which the factor model explains
means. Lots more people mistakenly think that we test for dropping smb by testing whether
E(smb) = λsmb = 0, “is the factor priced.”

This is wrong however. Why? Suppose smbt =
1
2
rmrft+

1
2
hmlt. Then, obviously, E(smb) >

0, but just as obviously, we can drop smb from the right hand side with no harm at all. We
need to test whether smb is useful to price other things, not whether it is priced. Equivalently,
when you drop smb from the regression the other coefficients change, and they may change
just enough to still explain expected returns, even if E(smb) > 0.

We can do the right test very simply by running a regression of smbt on rmrft and hmlt.

smbt = αs + bsrmrft + hshmlt + εt
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If αs = 0, then smb is priced by other two factors, and this is the test whether we can drop
smb from the model.

Why? Think about defining an orthogonalized factor smb∗t = αs + εt = smbt − bsrmrft −
hshmlt Rewriting the original model in terms of smb∗,

Rei
t = αi + birmrft + hihmlt + sismbt + εit
= αi + (bi + sibs) rmrft + (hi + sihs)hmlt + si (smbt − bsrmrft − hshmlt) + εit
= αi + (bi + sibs) rmrft + (hi + sihs)hmlt + sismb∗t + εit

and hence

E(Rei) = αi + (bi + sibs)E (rmrft) + (hi + sihs)E (hmlt) + siE (smb∗t )

The other factors would now get the betas that were assigned to smb merely because smb
was correlated with the other factors. This part of the smb premium can be captured by the
other factors, we don’t need smb to do it. The only part that we need smb for is the last
part. And E(smb∗) = 0 is exactly the same as αs = 0. (This is equivalent for a test bs = 0
in m = a− bmrmrf − bhhml− bssmb, 0 = E(mRe) as advocated in the λ vs. b Chapter 13.4
of Asset pricing. This must be equivalent to a test whether α0Ω−1α has risen for some well
defined common Ω, but neither I nor anyone else has worked that out.)

Eigenvalue factor decompositions

Summary of the procedure

Given an N×1 vector of random variables y, with cov(y, y0) = Σ, we form QΛQ0 = cov(y) by
the eigenvalue decomposition. If Y is a T ×N matrix of data on y, then [Q,L] = eig(cov(y))
in matlab. Λ is diagonal and Q is orthonormal, QQ0 = Q0Q = I.

We form “factors” by x = Q0y.The columns of Q thus express how to construct factors x
from the data on y.

We can then write y = Qx, i.e. yt = q1x
(1)
t + q2x

(2)
t + ...where q1 = Q(:, 1) denotes the first

column of Q. The columns of y thus also give “loadings” that describe how each y moves if
one of the factors x moves.

We have cov(x, x0) = Q0QΛQ0Q = Λ, i.e. the x are uncorrelated with each other.

If some of the diagonals Λ are zero, then we express all movements in y by reference to only
a few underlying factors. For example, if only the first Λ is nonzero, then we can express
x = q1z1 In practice, we often find that many of the diagonals of Λ are very small, so setting
them to zero and fitting y with only a few factors leads to an excellent approximation.

Since the factors are uncorrelated, if we ignore some factors, the loadings on the remaining
ones are the same as if we ran regressions,

yt = q1x
(1)
t + q2x

(2)
t + [q3x

(3)
t ]

yt = q1x
(1)
t + q2x

(2)
t + εt
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Derivation

Factors constructed in this way solve in turn the question “what linear combinations of y
have maximum variance, subject to the constraint that the sum of squared weights is one
and each linear combination is orthogonal to the previous ones?” In equations, each column
qi of Q satisfies

max [var (q0iy)] s.t. q
0
iqi = 1, q

0
iqj = 0, j < 1

Why is this an interesting question? “What linear combination q0yt of the yt has the
highest variance?” would be too easy a question. Just make q big. The constraint q0q = 1
means the sum of squared q must be equal to one, so you can’t boost variance by making q
big. You have to find the right pattern of q across the elements of y.

Why is this the answer? Let’s look at the first maximization — what linear combination of
the y has the largest variance, if you constrain the sum of squared weights to be less than
one?

max
{q}

var(q0yt) s.t. q0q = 1

Forming a Lagrangian,
L = q0Σq − λq0q

The first order condition (∂/∂q) is
Σq = λq

This is an eigenvalue problem! The answer to this question is then, choose q as an eigenvector
of the matrix Σ. Now, which one? Let’s see what variance of x we get out of all this

var(xt) = var(q0y) = q0Σq = q0λq = λq0qλ

Aha! The eigenvalue gives us the the variance of x. So, the answer to our maximization is,
choose the eigenvector q corresponding to the largest eigvenvalue λ.

In sum, to find the linear combination of y with largest variance, and sum of squared weights
equal one, we choose as weights q the eigenvector corresponding to the largest eigenvalue
of the covariance matrix of y. Q is a matrix of eigenvectors, so you’re done. Eigenvectors
are orthogonal q0iqj = 0 so the eigenvectors corresponding to successively smaller eigenvalues
answer the question for the remaining factors.

Now, what does this have to do with R2? Suppose we leave out some factors

yt = q1x
(1)
t + q2x

(2)
t + [q3x

(3)
t ]

Since x(1) and x(2) have maximum variance, this means x(3) and beyond have minimum
variance. In short we have found a factor model that for each choice of how many factors to
use maximizes the R2 in these regressions.

Rotation

There are lots of equivalent ways to write any factor model. If we have

yt = Qxt

237



then if R is any orthogonal (rotation) matrix, i.e. any matrix with RR0 = R0R = I, we can
define new factors zt = R0xt. Then xt = Rzt

yt = Q(Rzt) = (QR)zt

Now the columns of QR give us new loadings on the new factors, which are constructed by
zt = R0xt = R0Q0yt = (QR)

0 yt

This works even better if we use unit variance shocks.

yt =
³
QΛ

1
2

´³
Λ−

1
2xt

´
=
³
QΛ

1
2

´
zt

cov(zt, z
0
t) = Λ−

1
2ΛΛ−

1
2 = I

Now if we rotate,
wt = Rzt, zt = R0wt

we have
yt =

³
QΛ

1
2

´
zt =

³
QΛ

1
2

´
R0wt

cov(wt, w
0
t) = cov(Rzt, z

0
tR

0) = RR0 = I

In sum, if we rotate unit-variance factors, they are still uncorrelated with each other and still
have unit variance. You’re free to recombine factors in any way you want to make them look
pretty.
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