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A Cross-Sectional Test of an
Investment-Based Asset Pricing Model

John H. Cochrane

Unaiversity of Chicago, Federal Reserve Bank of Chicago, and National
Bureau of Economic Research

I examine a factor pricing model for stock returns. The factors are
returns on physical investment, inferred from investment data via
a production function. I examine the model’s ability to explain varia-
tion in expected returns across assets and over time. The model
is not rejected. It performs about as well as the CAPM and the Chen,
Roll, and Ross factor model, and it performs substantially better
than a simple consumption-based model. I also provide an easy tech-
nique for estimating and testing dynamic, conditional asset pric-
ing models—one simply includes factors and returns scaled by in-
struments in an unconditional estimate—and for comparing such
models.

I. Introduction

The investment return is the marginal rate at which a firm can transfer
resources through time by increasing investment today and decreas-
ing it at a future date, leaving its production plan unchanged at all
other dates. I examine whether cross-sectional and time-series varia-
tion in expected stock returns can be explained by investment re-
turns, inferred from investment data via an adjustment cost produc-
tion function.

Why? The identity of the macroeconomic risks that drive asset

I have benefited greatly from conversations with Lars Hansen on the methods used
in this paper. I am grateful to Mark Carhart, Gene Fama, Ken French, and especially
Wayne Ferson and Masao Ogaki for many useful comments. This research was partially
supported by the University of Chicago Graduate School of Business and the National
Science Foungation.
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prices and expected returns is a central question of finance, and an
important question for macroeconomics. There is a wealth of tantaliz-
ing empirical evidence for a link between macroeconomic events and
asset returns: many of the variables that forecast stock and bond
returns also forecast investment growth or growth in gross national
product; stock and bond returns are correlated with contemporane-
ous and subsequent economic activity; and expected returns are re-
lated to the covariances of returns with macroeconomic variables. But
there is as yet no accepted economic explanation for this evidence.

Ideally, the consumption-based asset pricing model should provide
a framework for digesting this empirical evidence and for identifying
the macroeconomic shocks that drive asset returns. But the empirical
performance of the consumption-based model has been disappoint-
ing, despite a two-decade specification search. Mechanically, this poor
performance results from the fact that nondurable consumption
growth barely moves over the business cycle, and it is poorly corre-
lated with stock returns. Economically, the poor performance may be
due to measurement error in consumption data; a poor understand-
ing of the representative agent’s utility function; or taxes, transactions
costs, borrowing constraints, and other frictions that can “delink”
many consumers’ intertemporal consumption choices from high-
frequency asset market movements.'

Much of finance studies reduced-form models that explain an
asset’s expected return by its covariance with other assets’ returns,
rather than covariance with macroeconomic risks. Though these
models may successfully describe variation in expected returns, they
will never explain it. To say that an asset’s expected return varies over
the business cycle because (say) the market expected return varies
leaves unanswered the question, What real risks cause the market
expected return to vary? Furthermore, fishing for asset return factors
with no explicit connection to real risks can result in models that
price assets by construction in a given data set (ex post mean-variance
efficient portfolios).

In this context, the basic idea of this paper is to infer the presence
of real macroeconomic shocks by watching firms’ investment deci-
sions, just as the consumption-based model tries to infer the presence
of systematic shocks by watching consumption decisions.

This paper extends the work in Cochrane (1991). That paper ex-
plained time-series variation in the market return with a single invest-
ment return, inferred from gross fixed investment data with an ad-

! Cochrane and Hansen (1992) give a literature review and a summary of “puzzles”
that characterize the empirical failure of the consumption-based model. Cochrane
(1989) and Luttmer (1992) calculate effects of small frictions.



574 JOURNAL OF POLITICAL ECONOMY

justment cost production function. It showed that some adjustment
cost is necessary to produce investment return variation anything
like that observed in market returns. It showed that variation in the
expected market return is largely matched by variation in the ex-
pected investment return and that market returns and investment
returns have the same association with subsequent economic activity.
This paper explains cross-sectional as well as time-series variation in
expected stock returns by reference to investment returns.

However, the factor pricing model studied in this paper is not a
pure production-based asset pricing model. A pure production-based
model uses no assumptions on preferences or restrictions on the space
of asset returns and reads any asset return off a producer’s first-order
conditions, just as the consumption-based model uses no technology
assumptions (i.e., is valid for any production technology) and reads
asset prices from a consumer’s first-order conditions. The standard
production functions I use here do not have general cross-sectional
asset pricing implications, since there is nothing a producer can do
to transform goods across states.

The techniques I use to estimate and test dynamic, conditional
factor models are derived from the work of Hansen (1982), Hansen
and Singleton (1982), Hansen and Richard (1987), and Hansen and
Jagannathan (19915). Knez (1991) and Snow (1991) use similar tech-
niques to study factor pricing models; Braun (1991) uses them to
investigate consistent pricing of asset and investment returns and
tests whether the inverse of a single investment return can explain
a cross section of assets; and De Santis (1992) uses them to study
international capital market integration.

II. Investment Returns: Definition
and Construction

To construct investment returns from production data, I use adjust-
ment cost technologies of the form

¥e = [k L) — ¢y ky), (1)
kior = (1 =)k, + 1), (2)

where y, is output, f(k,, [,) is the production function, k, is capital
stock, [, is labor input, ¢, is investment, 8 is the depreciation rate, and
c(i;, k,) is the adjustment cost function. The adjustment cost reflects
the fact that it is hard to produce in periods of high investment. For
example, it is hard to write papers while a new computer is being
installed. This is the standard sort of production function used to
justify the g-theory of investment.
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The one-period investment return is the amount of extra output
the firm can sell at ¢ + 1 if it invests an additional unit at ¢, leaving
all variables at ¢t + 2, ¢t + 3, ... unchanged. The Appendix goes
through the algebra to show that the one-period investment return
for the technology specified in (1)—(2) is given by

1+fE+ D) +ct+1) —ct+ 1)

r = (1-9) R

; )

where
~dci, k)

(¢
ol =—3:

’
and so forth.

The denominator 1 + ¢;(¢) in equation (3) reflects the fact that
some output is lost to adjustment costs when investment is in-
creased at time t. This term is equal to marginal ¢: the marginal
rate of transformation between installed and uninstalled capital. The
extra time ¢ investment gives rise to extra capital stock at ¢t + 1:
fi(t + 1) is the extra output that results from the extra capital stock,
and ¢,(t + 1) captures the effect of extra capital at ¢ + 1 on time
¢t + 1 adjustment costs. At ¢ + 1, the firm must lower investment to
restore the capital stock at ¢ + 2 to its original value. The lowered
investment lowers ¢ + 1 adjustment costs, and this means that more
can be sold. The term 1 + c¢,(t + 1) captures these effects.

The investment return is random: it depends on events at ¢t + 1 as
well as events at . A positive productivity shock at time ¢ + 1 implies
an unexpectedly high return to investment from ¢ to ¢t + 1. Do not
confuse the investment return with the expected investment return,
the required return, or other ex ante concepts.

I use the following parametric specification of technology:

LTEAY
y, = mpkk, + mpll, — 5 (k_) i 4)
t

In this case, the investment return (3) becomes

5) 1+ mpk + m(@pr/kiyy) + (71/2)(i;+1/kt+1)2

L+ nGJk) ®)

Tﬁ+1 =(1-

Though this function is not pretty, the investment return it specifies
is approximately proportional to growth in the investment/capital
ratio or, since capital does not vary much, growth in investment.
For given values of the parameters {n, 8, mpk}, I form investment/
capital ratios by accumulating capital according to equation (2) start-
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ing from the steady-state investment/capital ratio

2= [e(5) fa-9)]
wo[E) /a-e| -t

Then, given n and mpk, I construct the investment returns from their
definition (5).

One might object to the excessive simplicity of this technology. But
the most obvious complications—such as taxes, declining marginal
products, substitutability between capital and labor, and marginal
productivity shocks—affect the dividend or one-period cash flow por-
tion of the investment return. The adjustment cost influences the
price change term (1 + ¢; or 1 + m[i/£], the marginal rate of transfor-
mation between installed and uninstalled capital), which dominates
the investment return as it does stock returns.? Furthermore, most
of these complications have low-frequency effects on the level of
prices or ¢. By looking at investment and stock returns, we essentially
first-difference out the effects of these complications. On the other
hand, complications to the adjustment cost technology such as gesta-
tion lags may have first-order effects on the results.

III. Factor Pricing Model

What can one do with investment returns? If there are no arbitrage
opportunities, then there is a stochastic discount factor m, such that
any asset return 7; and investment return r} obey (see, e.g., Ross 1978;
Hansen and Richard 1987; Hansen and Jagannathan 1991b)

1 = E(mr}); 1= E(mr}). (6)

The marginal utility growth of a nonsatiated owner of the firm is
one such m; E can be interpreted as a conditional or unconditional
expectation. I shall be specific about conditioning information below.

Braun (1991) tests two immediate implications of this fact. First,
one can expand the space of returns on which one tests any asset
pricing model (model for m) to include investment returns. In this
way, one tests whether the asset pricing model can account for macro-
economic events as well as stock market events. Second, one can test
for the absence of arbitrage or consistent pricing between the set of
asset and investment returns by trying to construct nonnegative m’s
that satisfy equations (6).

2 Braun (1991) found that tests of producer first-order conditions were insensitive
to these issues in detailed experiments, for just the reasons given above. Sharathchan-
dra (1991) models a concave technology with production function shocks but no adjust-
ment costs and obtains an essentially constant investment return.
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I concentrate on asset pricing. What can one learn about asset re-
turns r from investment returns r'? I study the hypothesis that a
factor pricing model holds; namely, the investment returns are factors for
the asset returns. More formally, an investment return factor pricing
model says that there exists a discount factor that is a function of
only the investment returns and yet prices both asset and investment

returns:
m=> by (7)
k

satisfies equation (6) for all asset returns r; and investment returns
T}

The law of one price implies that there is always a discount factor
m that is a linear combination of the investment and asset returns
and that prices both. Mechanically, one can choose &’s to construct

m=zbj7}'+zbkri
7 %

so as to satisfy equations (6) exactly, in sample or in population. The
factor pricing model restriction is that the asset returns can be ex-
cluded from this construction. This restriction is equivalent to the
statement that expected excess returns are proportional to the covari-
ance or betas of any return with the investment returns. It is also
equivalent to the statement that the investment returns span the
mean-variance frontier of investment and asset returns.

Why should investment returns be factors for asset returns? Factor
pricing models are derived by arbitrage assumptions or by preference
assumptions. We can assume that the firms on the New York Stock
Exchange (NYSE) are claims to different combinations of N produc-
tion technologies, plus idiosyncratic components that have small
prices. Alternatively, we can invoke preference assumptions under
which the returns on the N active production processes, which are the
only nondiversifiable payoffs in the economy and add up to aggregate
wealth, drive marginal utility growth and hence price assets (see, e.g.,
Brock 1982; Cox, Ingersoll, and Ross 1985).

The number and nature of the intertemporal technologies that
drive asset returns or, equivalently, the appropriate level of aggrega-
tion of the capital stock are a modeling choice. “My car” and “your

* Time-separable preferences are the central assumption. If preferences are not
time-separable, then past investment returns could affect current asset returns. One
could, of course, account for potential nonseparabilities by including past investment
returns as additional factors. With general preferences in discrete time, nonlinear
functions of investment returns might also enter m; one can regard linearity either as
an assumption on preferences or as a first-order approximation as in the log utility
example below.



578 JOURNAL OF POLITICAL ECONOMY

car” are both ways of getting consumption services from today to
tomorrow, but one hopes that their behavior across states of nature
that affect asset returns is sufficiently similar that we can aggregate
them into “cars.” However, there is no reason to believe a priori that
all the intertemporal investment opportunities in the economy can
be summarized by one or two aggregated production functions. I
follow the “spirit of the arbitrage pricing theory” and hope that only
a few investment return factors will suffice, but this is an additional
modeling assumption, not a prediction of theory. Models with highly
disaggregated investment opportunities may turn out to be more use-
ful for some purposes.

Following the factor pricing tradition, I estimate the loadings of
the investment return factors in the discount factor—the #’s—as free
parameters. In complete general equilibrium models—models in
which we can solve for consumption and asset returns ex post, not
just state 1 = E(mR)—the b’s can be derived from economic theory
as well. For example, in the standard one-sector stochastic growth
model with log utility, Cobb-Douglas production, and full deprecia-
tion, we have*

¢ .
=t EICRE)
Civ1 T

My =P

where B is the subjective discount factor. This model predicts b, =
2,b, = —1. I estimate the b’s rather than construct a complete general
equilibrium model, in order to focus on production technologies and
firm behavior rather than preferences and sources of shocks. More
theory is better only if it is the right theory.

IV. Empirical Methods
A. A GMM Test of Factor Pricing Models

The statement of the factor pricing model above maps naturally into
the generalized method of moments (GMM) framework for estima-

* The model is

max E » BJIn(c)
j=0
subjecttoc, + i, =y, = Ny, Ink, =plnk,_; + €.

The investment return is ri,; = aX,,i¢"! = ay,,,/i,- The solution to the model gives
¢, = (1 — aB)y, and i, = afy,. Substituting this solution into the investment return,
we obtain

1

LS

i _ 16+
=g
t
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tion and testing. Let r,,, denote a vector of returns and p, denote a
vector of prices. (The “price” of a return is one, and that of an excess
return or difference between two returns is zero.) I suppress time
subscripts when they are clear. The natural set of moment conditions
to exploit is p = E(mr) or

E(mr — p) = 0. 8)

Let f,,, denote a vector of pricing factors (one factor may be a
constant). A linear factor pricing model is m = f'b, where b is a
vector of coefficients.

Following the standard GMM procedure (Hansen 1982; Hansen
and Singleton 1982), I estimate the parameters b to minimize a
weighted combination of the sample moments (8). Using Hansen’s
notation, let E; denote the sample mean, E; = (1/T) Z7_; let W
denote a weighting matrix; and denote the sample moments g7,

gr=E;(mr — p) = Er(rf')b — E(p). 9)

The GMM objective is to choose b to minimize a weighted sum of
squares of the pricing errors across assets,

Jr = grWgr. (10)

Econometric issues aside, this objective is a natural and intuitive way
to pick parameters in order to make the model fit as well as possible.
Since the parameters b enter linearly in the minimization, we can
find their estimates analytically. Let D denote the matrix of cross—
second moments between returns and factors:
ogr
= —— = E(rf").
= Er(rf')
Let b denote the estimate of b. Then the first-order conditions to the
minimization of (10) are

ogr , .
—EWgT =D'W(Db - E;p) = 0. (11)

Solving, and assuming that at least one element of E,p is not equal to
zero,” we get

b = (D'WD)"'D’' WE .(p). (12)

3 If all elements of p are zero, which occurs when only excess returns are used, then
b is identified only up to a constant (0 = E(mr) > 0 = E(2mr)). In this case, one can
impose one element of b arbitrarily (e.g., ) = 1) and solve for the others, one can
add a normalization such as 1 = E(m) as an additional moment, or one can add a
single return in levels to the system such as the real Treasury-bill return to obtain a
p # 0. 1 follow the last strategy.
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This estimate has a natural interpretation: b is the coefficient in a
generalized least squares (GLS) cross-sectional regression of the mean
price vector E 1(p) on the second moments D. Since the asset pricing
model (8) or (9) says that prices should be proportional to second
moments, this estimate is a natural way of choosing parameters to
make the model hold as well as possible.

The GMM distribution theory (Hansen 1982) gives an asymptotic
joint normal distribution for the estimates b. Denote by S a consistent
estimate of the covariance matrix of the sample pricing errors gr,
which is also the spectral density at zero of mr — p, or

S = consistent estimate of Z E[(m,x, — p;)(m,_;jt,_; — P;_})]-

j: —c

Then Hansen (1982) shows that b is asymptotically normal with
variance-covariance matrix

var(b) = %(D’WD)"D’WSWD(D'WD)“. (13)

If W is chosen equal to $™!, the GMM estimator is “optimal” or “effi-
cient” in the sense that this variance matrix is as small as possible. In
this case, the variance formula specializes to the more familiar form

var(b) = %(D’S“D)‘l‘ (14)

It is interesting to know whether the pricing errors are in fact equal
to zero, after one accounts for estimation and sampling error. Hansen
(1982, lemma 4.1) also gives us a distribution theory for the pricing
errors gr:

var(gr) = %[I — D(D'WD)"!D'W]S[I - D(D'WD) 'D'W]'. (15)

(While S is the variance-covariance matrix of the sample pricing er-
rors evaluated at the true parameters, var[g(b)], the terms in brack-
ets account for the fact that linear combinations of pricing errors are
set to zero in parameter estimation, giving us var[gT(b)] ) We can use
this formula to construct standard errors for the pricing errors on
individual assets or groups of pricing errors. In particular, we can
test whether all pricing errors are zero by forming

grlvar(gr)]* gr ~ x2(#moments — # parameters). (16)
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The “+” denotes pseudo-inversion,® since the variance-covariance

matrix is singular with rank #moments — # parameters. When one
uses the efficient estimator, W = S~!, this test reduces to the cele-
brated J; test of overidentifying restrictions:

TJ; = TgiS™'gr ~ x?(#moments — #parameters). (17)

This is the basic test whether we can statistically reject a given observ-
able factor model against a nonspecific alternative.

It can be more interesting to test a model against specific alterna-
tives, that is, to ask, Given factors f;, are factors f, important for
pricing assets? There are two ways to perform such tests, correspond-
ing to Wald and likelihood ratio philosophies. Start with a general
model that includes both sets of factors, m = bif; + byf,. First, we
can use the sampling theory (13) or (14) to form ¢ or x? tests for b,
= 0. Second, we can compare the minimized objective Jr =
g7S™'g; of a restricted system that excludes a given set of factors to
the objective of the unrestricted system that includes all factors. If
the excluded factors are not important for asset pricing, the J should
not rise much. Precisely, if we use the same weighting matrix to esti-
mate both systems (I use the weighting matrix from the unrestricted
system), then

TJ r(restricted) — T r(unrestricted) ~ x2(# of restrictions)

(Newey and West 1987a). It is important not to simply compare Jr
statistics from two estimates, but rather to use the same weighting
matrix. A model can achieve a low J; by simply blowing up the S
matrix rather than improving the moment conditions.

To perform the GMM estimation, I start with an identity weighting
matrix, W = I, which forms “first-stage” estimates of the parameters
b. I use these first-stage estimates to form an estimate of the matrix
S and then use S™! as the weighting matrix for “second-stage” esti-
mates. I iterate this procedure, finding third-stage estimates and so
forth. This does not change the asymptotic distribution theory, but
Ferson and Foerster (1994) find that this procedure gives better
small-sample performance. I also found that it produces results that
are more stable across small variations in the model setup. Hansen,
Heaton, and Luttmer (1995) suggest that one instead minimize
g7(b)S(b) ! gr(b) directly as a function of parameters b, and they find
that this procedure can work well in small samples. This procedure

6 One way to pseudo-invert a variance-covariance matrix is to perform an eigenvalue
decomposition, V.= QAQ’, with A a diagonal matrix of eigenvalues. Let A* be a
diagonal matrix with 1/); for nonzero eigenvalues \; and zero for zero eigenvalues.
Then V* = QA* Q. In practice, it helps to multiply V by a large number initially to
help distinguish small nonzero eigenvalues from rounding errors.
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has the great advantage that it is invariant to normalization choices
when b is not completely identified and to the choice of the initial
weighting matrix. However, I have an analytic formula for b only
when the weighting matrix is held fixed, so the iterative strategy is
much quicker.

When the factors are investment returns, I estimate production
function parameters in addition to the factor weights b. Since these
parameters enter nonlinearly, a search is required. The program-
ming is harder, but the GMM methodology extends trivially.

B. Conditional Estimates and Conditional Factor Models

So far, I have considered unconditional factor models and estimates
of unconditional moments. It is easy to include the effects of condi-
tioning information by scaling the returns or the factors by instru-
ments, as follows. (Scaling returns is Hansen and Singleton’s [1982]
use of instruments in a moment condition. Scaling factors is analo-
gous to linear models of conditional betas, as in Ferson, Kandel, and
Stambaugh [1987], Harvey [1989], and Shanken [1990].)

Scaling Returns

To test the conditional predictions of an asset pricing model,
pt=E(mt+lrt+l|It)’ (18)

we can expand the set of returns to include returns scaled by instru-
ments and then proceed as before; that is, we use the moment condi-
tions

E[pt®zt] = E[m,;,(r;,,®2)], z,€I, (19)

where ® denotes the Kronecker product (multiply every asset return
by every instrument).

Equation (19) is an implication of equation (18): multiply both sides
of (18) by z, and take unconditional expectations. Conversely, if (19)
holds for all variables z, in an information set I,, then (18) holds.
Thus expanding the payoff space to include scaled returns as in (19)
can test all the implications of (18), so that no generality is lost in
principle. Of course, the usual instrument selection problem remains.
If z, € I,, then z? € I,; “every variable” in I, means every variable and
every measurable function of every variable, so in principle one has
to include a lot of variables. In practice, one hopes to capture most
of the predictability of mr with a few well-chosen and thoughtfully
transformed instruments, as one hopes to capture the information in
the thousands of available assets in a few well-chosen portfolios.
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This scaling procedure also has an intuitive interpretation. The
scaled returns 7, ,z, are the returns on managed portfolios in which
the manager invests more or less according to the signal z,. Thus we
have shown that one can test all the conditional implications of an asset
pricing model by performing unconditional tests on managed portfolio
returns!

Scaling Factors

To test a model in which the factors are expected only to conditionally
price assets, we can expand the set of factors to include factors scaled
by instruments:

myy = b'(f,,®z).

To motivate scaling factors, note that we have supposed so far that
the discount factor m is a fixed linear combination of a given set of
factors. However, the discount factor m might be a linear combination
of factors with weights that vary as a vector of instruments z varies
across different information sets:

m1 = b(z) £,

A conditional factor model does not imply an unconditional factor
model: the model 0 = E[r,, f;, b(z,)] does not imply that there is
a b such that 0 = E[r, f,,,b].

It is sufficient to consider b’s that vary linearly with the instruments,
since nonlinear functions can be expressed as linear functions of addi-
tional instruments. With one instrument z and one factor f then, the
conditional factor model is

My = (bo + 2,60 fri1-

Scaling the factors f by the instruments z achieves the same result.
The last equation is equivalent to

My = bofrar + 01(fre1 X 2,41).

Therefore, given the choice of instruments, performing the GMM
estimation and testing with scaled factors is in principle a completely
general test of a dynamic, conditional factor pricing model based on
the instruments. Again, the only complaint one can make is that more
or other instruments (or functions of instruments) should have been
included.

Scaling

To keep scaling returns and scaling factors distinct, I refer to the
former as “conditional estimates” and the latter as a “scaled factor
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pricing model.” The two are distinct: If one had a model that pre-
dicted constant b’s, then it would be appropriate to scale the returns
(perform conditional estimates) but not the factors. One can also ex-
amine the unconditional implications of a scaled factor pricing model,
scaling the factors but not the returns.

Consumers may observe finer information sets, that is, more instru-
ments z, than we do. This fact potentially reduces the power of tests
that include scaled returns but does not bias them. Omitting instru-
ments is exactly the same as omitting potential assets (managed port-
folios). However, a conditional factor pricing model with respect to
a fine information set does not imply a conditional factor pricing
model with respect to a coarser information set, as it does not imply
an unconditional factor model. Equivalently, conditional mean-
variance efficiency does not imply unconditional mean-variance effi-
ciency, though the converse is true (Hansen and Richard 1987). Thus
a rejection of any factor model that is derived as a conditional factor
pricing model with respect to consumers’ information may still be
attributed to an insufficiently rich set of instruments. But scaling fac-
tors does provide a very easy method for estimating and testing gen-
erally specified conditional factor pricing models given an informa-
tion set.

C. Relation to Traditional Statements and Tests of
Factor Models

Factor Models

The statement that the discount factor m is a linear function of factors
is equivalent to the conventional statements of factor pricing models
in terms of betas and factor risk premia. (This fact has been known
at least since Ross [1978] or Dybvig and Ingersoll [1982].) Precisely,
the model

m=D>b'f; 1=E(@mr) (20)
implies the traditional statement of a factor pricing model,
E(r)=1"+B'\, (21)

where B is a vector of multiple regression coefficients of returns on
the variable factors and r° is a constant across assets. Conversely, (21)
implies that there exists a discount factor of the form m = b'f.

To prove this statement, define the riskless or zero beta rate

o_ 1 1

" TEm  Ef)b
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denote the variable factors f, that is,
H
f=1.1;

f

B = cov(i‘, i"')_l COV(?, T);

define B as

and define A as the price of the demeaned variable factors, brought
forward at the risk-free rate,

A= —r°E[m - ET)].

With these definitions, one can simply manipulate either (20) or
(21) to obtain the other. These definitions also allow one to obtain
B, A estimates from a GMM estimate of b together with the factor
variance-covariance matrix or to obtain estimates and tests of b
from cross-section or time-series regression estimates of B, A.”

One can rewrite an element A; of N as

N = —r°[Emf;) = EmE(f)] = E(f)) = r°E(nf)).

If a factor f; is an excess return, then 0 = E(mf)), and we recover the
familiar result that \; is the mean of the excess return factor E(f)).
I(t)" a factor is a return, then 1 = E(mf;), and we recover \; = E(f) -
r.

The b’s are not the same as the B’s: b are the regression coefficients
of m on f, and B are the regression coefficients of r on f. One tests
whether “factor j is priced” by testing whether A; = —r°E[m(f; —
Ef;)] = 0. This hypothesis does not answer the question whether fac-
tor j is marginally useful in pricing other assets. To test whether
factor j helps to price assets, one tests whether b; = 0, that is, whether
one can construct an m that prices the set of assets under examination

without factor fj Since
A= —E[(f - EH)f'b] = —r*cov(f, )b,

7 Mechanically,
1 = E(mr) = E(rf')b = E(")E(f")b + cov(r,f')b,

1 — cov(r,f')b - 1 - cov(r,i")l-)

E(f')b Ef)b
1 —cov(r,f)cov(£, ) LcovEE)b _ o o P
= E(E)b =7" - 7r’B' cov(f, f')b
0 — OB’ E((f - Ef)f'b] = ° + B'A.
The same steps backward prove “only if.” Given either model, there is a model of the
other form. They are not unique. We can add to m any random variable orthogonal to

returns, and we can add risk factors with zero B or \, leaving pricing implications
unchanged.

EQ) =
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the hypotheses b; = 0 and \; = 0 are equivalent only if the factors
are orthogonal: if cov(f, f') is diagonal.

The inclusion of scaled factors and scaled returns in an m = b'f,
p = E(mr) model captures variation in conditional betas and factor
risk premia A in a very simple structure. Most tests of factor pricing
models include auxiliary assumptions, such as constant conditional
betas, constant conditional factor risk premia, constant conditional
covariances, or complex time-series models for these quantities. Fur-
thermore, the factors f do not have to be conditionally mean zero
(white noise), conditionally or unconditionally orthogonal, or condi-
tionally or unconditionally homoskedastic, as is often assumed.

The model m = b’f is a factor pricing model. A factor structure on
the covariance matrix of returns is sometimes used to derive factor
pricing, but factor pricing does not imply or require a factor struc-
ture. The use of the same word “factor” for a pricing factor, a covari-
ance factor structure, and a discount factor is unfortunate, but it is
too late for me to try to change it.

Empirical Procedures

The moment conditions or pricing errors are proportional to ex-
pected return errors or a’s. By the same argument as given above
for the equivalence of m = b'f and B, N models, we have

g = Enr) — p = 5 [E@ — B'A = 1'p] = 5,

and conversely, we can recover expected return error o estimates
from GMM estimates via

__8§
a= E_(m)' (22)
The GMM objective is to minimize a weighted sum of squared pricing
errors, which we can write in terms of o’s as

ar(b) War(b
gr(b) We; () = T X
)

Except for scaling by %, we can think of GMM as minimizing o’s.
The resulting x? test has the form g7 X (covariance matrix)”"! X gr,
which is obviously analogous to the Gibbons, Ross, and Shanken
(1989) test statistic, aj X (covariance matrix)~! X aj.

Generalized method of moments minimizes the pricing errors in a
way that is similar to a Fama-MacBeth (1973) cross-sectional regres-
sion. To see this, consider the special case in which the factors are
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mean zero and only excess returns are considered, and ignore for
the moment the distinction between sample and population moments.
Then the model can be written as

0=Emr?); m=1+fb, EF)=0

(E(m) is not identified by excess returns, so I normalize to E(m) = 1).
The first-order conditions for the GMM minimization are then

cov(f, r*"YWIE(r*) — cov(r’, §')b] = 0,
which we solve for
b = [cov(F, r*") W cov(r’, £ cov(f, r*")WE(x°).

The first-stage GMM estimate (W = I) is thus a cross-sectional ordi-
nary least squares (OLS) regression of expected returns on covari-
ances. The second-stage GMM estimate is a corresponding GLS es-
timate.

In the more general case, the GMM estimate (eq. [12]) runs a cross-
sectional regression of mean prices on second moments. This slight
refinement allows the distribution theory to reflect the sampling error
induced by estimating sample means of the factors.

V. Estimating and Testing the Investment Return
Factor Model

A.  Setup

I use two investment technologies, corresponding to gross private
domestic nonresidential and residential investment. (The Appendix
details the sources and transformations used for all data.) I assume
that each investment series corresponds to a technology of the form
(4), so that its investment returns are given by (5).

For asset returns, I use the 10 portfolios of NYSE stocks sorted by
market value (size) maintained by the Center for Research in Security
Prices (CRSP). There is a large spread in the mean returns of these
portfolios: the small-firm decile’s mean excess return is almost twice
that of the large-firm decile. Any asset pricing model must explain
this spread in mean returns by a spread in assets’ covariance with risk
factors. Since the investment returns are based on quarterly average
investment, I transformed the asset returns to quarterly average re-
turns rather than use end-of-quarter to end-of-quarter returns. I in-
clude moment conditions for investment returns along with the mo-
ment conditions generated by asset returns, since both sets of returns
should be correctly priced by this or any model and since it is interest-
ing and important to check whether the asset pricing model can ac-
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count in this way for macroeconomic events. I created excess returns
by subtracting the 3-month Treasury-bill return in each case, to focus
on risk premia. I also include the level of the ex post real Treasury-bill
rate as an asset, in order to identify the level of the discount factor m.®

I use two instruments: the term premium (yield on long-term gov-
ernment bonds less yield on 3-month Treasury bills) and the divi-
dend/price ratio of the equally weighted NYSE portfolio. I also con-
sidered the default premium (yield on BAA corporate bonds minus
yield on AAA corporate bonds); with the dividend/price ratio, it pro-
duces similar results. These instruments are popular forecasters of
stock returns. In the first-stage estimation, the moments correspond-
ing to scaled returns are treated equally with the nonscaled returns,
so it is convenient that the scale of the two is roughly comparable.
To this end, I used 1 + 100 X [(d/p) — 0.04] in place of the raw
dividend/price ratio.” To avoid overlap with the averaged return se-
ries, I lag the instruments twice: an instrument used for the return
from the first to second quarter is known by the last day of December.

Scaling factors and assets by instruments can lead to an explosion
of moment conditions and scaled factors. I prune this explosion in
three ways, beyond the already limited set of assets and instruments.
First, I do not scale the Treasury-bill return by the instruments. Such
scaling asks whether the model can capture variation over time in the
real Treasury-bill return. I want to focus on whether the model can
capture the much larger variation over time in risk premia, repre-
sented by scaled excess stock returns. Second, I scale the variable
factors by the instruments, but I do not include the instruments them-
selves (constant scaled by instruments) as factors. Such factors help
the model to capture variation in risk-free rates (varying E,(m)), but
they do not help the model capture time-varying risk premia. Third,
I use only deciles 1, 2, 5, and 10 in the conditional estimates (return
times instrument). With all 10 deciles I would have 37 moment condi-
tions in 186 data points. The iterated GMM estimates behaved badly
with 37 X 37 covariance matrices. I hope that deciles 2, 5, and 10
capture most of the cross-sectional information in (span the frontier
of) the original 10 deciles; I include decile 1 as well in order to
examine the well-known size anomaly.

8 Of course, the system 1 = E(mr®); 0 = E[m(r — r*)] is equivalent to the system 1
= E(mr®); 1 = E[mr], since either set of moments is a linear combination of the other.
In a one-step efficient GMM estimate, min gr(b)'S™!(b)gr(b), the two setups would
yield exactly the same result. However, iterated and first-stage GMM estimates are
affected by the initial choice of moments.

® This transformation is supposed to be data-independent. If I were to use [(d/p) —
E(d/p))/a(d/p), 1 would have to adjust the distribution theory for estimation of the
mean and variance of d/p, not a straightforward task. The estimates are sensitive to
scaling choices of the instruments, so it is important to choose instruments with a
reasonable scale.
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If we allow all the production function parameters {n, 3, mpk} to
vary, the system is overparameterized. Examining the definition of
the investment return (5), one can see that the parameters 8 and mpk
basically affect the mean of the investment return, and 7 affects its
mean and standard deviation. None of the parameters substantially
affects the cross-correlations of investment returns with other vari-
ables; they are basically given by the cross-correlation of investment
growth with the other variables. Furthermore, the mean and standard
deviation of the factors are not separately identified, since the factors
can be rescaled at will by choice of b. As a result, the minimization
surface has a valley in it, and the minimization program soon crashes
with a singular gradient matrix dg;/d[n & mpk]. Therefore, I present
results in which m and 8 are held fixed, minimizing only over mpk. 1
tried choosing each of the parameters and choosing the parameters
sequentially (first m, then mpk, etc.); both procedures produce similar
results.

The tables below present results imposing no autocorrelation in
the construction of the S matrix, since the null hypothesis of the
central conditional models predicts that lagged mr should not predict
mr. I also tried using four Newey-West (1987b) lags to construct stan-
dard errors, and the results overall are not much changed, indicating
little autocorrelation.

B. [Iterated GMM Estimates and Tests of the Investment
Return Model

Table 1 presents estimates and tests of the investment return factor
model. Start with the simple unconditional estimates of the nonscaled
factor model, panel A. The marginal product of capital parameters
mpk are plausible and highly significant. They have about the same
value (0.05-0.06) and are highly significant in all the following esti-
mates, so I do not present them in the following tables, though they
are estimated any time an investment return is estimated. The b&’s
measure which factors are important for pricing assets. The residen-
tial factor prices significantly (¢ = —2.61), but the nonresidential
factor does not (¢ = 1.37). They are jointly significant (p-value for
joint b,,, b, = 0 is 3 percent). In interpreting the &’s, keep in mind
that the discount factor m is proportional to the minimum second-
moment return, which is on the lower portion of the minimum vari-
ance frontier. Since the investment returns are typically on the upper
portion of the minimum variance frontier, b’s may be negative. Fi-
nally, the J; test of overidentifying restrictions does not reject the
model (p-value 24 percent).

In the conditional estimates (with scaled returns), panel B, both
investment return factors are individually significant (t on b = 1.94



TABLE 1

ITERATED GMM ESTIMATES AND TESTS OF INVESTMENT RETURN FACTOR MODEL

A. NONSCALED MODEL m = by + b, 7, + b,ri

PARAMETER ESTIMATES

mpk,,, mpk, by by b,
Unconditional Estimates (1 = E(mr?),
0 = E(mr’) [13 moments])
Coefficient .058 .063 -19 71 -51
t-statistic 38 44 -.40 1.37 —-2.61
Conditional Estimates (1 = E(mr?),
0 = E(mr’ ® z) [19 moments])
Coefficient -36 123 —-86
t-statistic - —.56 1.94 -5.57
TEsTS
All b bpys b, Jr Stock Jr
Unconditional Estimates
x? 382 7.0 10.4
Degrees of freedom 3 2 8
p-value (%) .00 3.1 24
Conditional Estimates
x’ 35 22 22
Degrees of freedom 2 14 12
p-value (%) .00 7.4 4.0
B. ScaLED FACTOR MODEL m = by + b'(r' ® z):
ConpITIONAL ESTIMATES (1 = E(mr?), 0 = E(mr* ® z))
PARAMETER ESTIMATES
bO bnr br bnr~lp br~tp bnr~dp br~dp
Coefficient -29 157 -126 48 —48 -57 56
t-statistic —.46 1.48 -2.00 3.42 -3.42 -2.12 2.11
TEsTs
Jointb = 0
No b, Unscaled Scaled All nr All r Jr
Wald x? 32.8 4.1 18.4 12.2 13.6
p-value (%) .001 13 .1 7 4
AJrx? 54 4.2 26 11.1 10.9 10.6
p-value (%) .00 12 .003 1.1 1.2 39
Degrees of freedom 6 2 4 3 3 10

NoTe.—In the unconditional estimates, r* is the 10 CRSP size decile portfolio and two investment excess returns,

and r

th

is the real Treasury-bill return. The conditional estimates use the deciles 1, 2, 5, 10, and investment excess

returns, scaled by instruments, and the real Treasury-bill return. Investment returns are functions of nonresidential
(nr) and residential () gross fixed investment, eq. (5) with parameters q = 3.0, 5 = .05 throughout. mpk,, and
mpk, are always estimated, even when not shown. Instruments are the constant, term premium (¢p), and equally
weighted dividend/price ratio (dp). The p-value is the percentage probability of obtaining a x2 value as high or
higher.
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and —5.57) and jointly highly significant (p-value < 0.00 percent).
Adding moments should sharpen the precision of estimates, and it
does. However, the J statistic now provides some evidence against
the model (p-value 7 percent). A J; test formed using only the stock
returns, explained in some detail below, produces slightly more evi-
dence against the model, with a 4 percent p-value.

The natural response to the rejection of the conditional estimates
is to include scaled factors, panel B. The scaled factors are individu-
ally and jointly significant. The table presents Wald tests, based on
the joint distribution of the b in equation (14), as well as tests on the
increase in J when groups of the factors are omitted from the model.
It is comforting that the two procedures yield quite similar results.
The unscaled factors are only marginally jointly significant (p-value
13 percent), but the scaled factors are highly jointly significant. Also,
the residential and nonresidential factors are significant as subgroups.
Finally, the J test does not reject the overall model (p-value 39 per-
cent).

C. First-Stage Estimates and Tests

Every first-year econometrics student is advised that GLS is best but
OLS is pretty good. The GLS estimates can be more efficient with a
good estimate of the covariance matrix, but GLS estimates can be
terrible if the covariance matrix is poorly modeled. The OLS esti-
mates are consistent and robust to many misspecifications. Thus one
is often advised to make sure that GLS estimates are not too different
from OLS estimates, or even to estimate parameters by the inefficient
but robust OLS, correcting standard errors for residual correlation
or heteroskedasticity.

The same advice applies to GMM. Efficient GMM estimates use the
estimated covariance matrix of the sample moments to find linear
combinations of those moments that are the most precisely measured.
Generalized method of moments weights those linear combinations
more highly in estimation, in order to improve efficiency, and then
evaluates the model by testing whether those most precisely estimated
linear combinations of moments are in fact zero. The dangers of this
procedure if the S matrix is poorly measured are the same as those
of GLS. The estimate may pay too much attention to portfolios that
spuriously seem nearly risk-free in a small sample and hence seem
to have well-measured pricing errors. Statistical issues aside, efficient
GMM may pay close attention to economically uninteresting but sta-
tistically well-measured moments.

To make this observation precise, diagonalize the S matrix, S =
QAQ’, where Q is an orthonormal matrix with eigenvectors in its
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columns and A is a diagonal matrix of eigenvalues. Since S7! =

(Q'AQ)"' = Q'A™!Q, we can define
r*=Q'r; p*=Q'p
and write the efficient GMM objective as
min{[E (mr* — p*)]' A [E(mr* — p*)]}.

The efficient GMM estimate first forms portfolios of the original
assets with weights given by the eigenvalues of S; then it pays more
attention to the portfolios corresponding to small eigenvalues of S—
the ones whose pricing errors are most precisely measured.

The smallest four eigenvalues of S in this case are 1/64,000,
1/22,600, 1/14,200, and 1/7,800, so the first eigenvector is by far the
most important in the estimation and testing. Figure 1 presents the
corresponding portfolio weights: the first column of Q. (Figure 1
rescales the weights so that they sum to one.) By far, the most impor-
tant assets in this portfolio are the two investment returns. The invest-
ment returns have a good deal less variance than the stock returns,
and so their means are more precisely measured. The portfolio places
practically no weight on the Treasury-bill return. The asset and in-
vestment return moments are formed from m times excess returns,
or m times a number typically around 0.02 (investment) or 0.10
(asset). The Treasury-bill rate moment is formed from = times a

Weight
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Fic. 1.—Portfolio (eigenvector) corresponding to largest eigenvalue of §7!
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number typically around 1.01. Therefore, the quite high volatility of
the discount factor m translates into a high variance of mr® and thus
a high sampling variability for this moment.

The portfolio graphed in figure 1 also features large long and short
positions in similar assets. This is a common feature of portfolios
formed to minimize variance in a sample. The original portfolios
are highly correlated, so their sample variance-covariance matrix and
hence the S matrix are nearly singular. Small sampling errors in
means and covariances make it look like there are nearly riskless
portfolios.

So, GMM does exactly what we ask it to. We ask it to measure
parameters “efficiently,” which means to weight more heavily sources
of information with less estimated sampling variation. Then GMM
evaluates the model (via the J; statistic) by asking whether the pricing
errors on these low sampling error portfolios are in fact zero, after
accounting for sampling information.

But is this what we want GMM to do? Perhaps not.

Evaluation: J; Tests on a Restricted Set of Moments

Perhaps we do not want to accept or reject the model on the basis of
how well it prices the portfolio graphed in figure 1. One alternative
is to use only a subset of assets in the overidentifying restrictions test.
Using the expression (15) for the variance-covariance matrix of the
moment conditions, we can form an analogue to the J; test in equa-
tions (16) and (17) using only an interesting subset of moments.

I conduct such tests for all moments excluding the Treasury-bill
rate, and for the stock returns alone, to check that the model is not
evaluated only on its ability to price investment returns. In all but one
case, these tests produce numerically the same values as the J; test in
table 1. To see how this is possible, recall that the GMM estimate sets
some linear combinations of moments to zero in sample in order to
estimate parameters. Suppose that the first moment of a two-moment
GMM estimate is set to zero in estimation, that is,

ogr\ _ &ir| _
[(E)w]er-u a7 -0

Now, the J; test is based only on the second moment. If we test
only the second moment, we obtain exactly the same test statistic and
degrees of freedom as the J test. In the one case in table 1 in which
the stock return J; test was different from the J; test, marked “Stock
Jr” the stock return only test gives slightly more statistical evidence
against the model, lowering the p-value from 7 percent to 4 percent.
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Thus the iterated GMM estimates and tests survive an important
robustness check: evaluating this model on only the asset moments
does not make much difference, even though the estimates concentrate
on the investment return moments.

Estimation: First-Stage GMM

If we are uncomfortable estimating and evaluating a model on the
basis of portfolios such as figure 1, perhaps we should instead ask
GMM to weight assets more evenly or, in an economically more inter-
esting way, in estimation as well as in testing. I use an identity
weighting matrix, so that all moments are weighted equally. This is
the first-stage GMM estimate and test.! The only tricky part of first-
stage or fixed weighting matrix estimates is that one must use the
corresponding standard error, moment variance, and overidentifying
restrictions test formulas, equations (13) and (16), rather than their
more familiar special cases for an optimal weighting matrix, equations
(14) and (17). In addition, the test based on the increase in GMM
objective no longer has a x? distribution, so I examine only Wald tests
of joint &’s for model comparisons.

Table 2 presents first-stage estimates and tests of the investment
return factor model. The estimates and test statistics are quite similar
to their iterated GMM counterparts in table 1, with the decrease in
precision that one expects of a less efficient estimate: the significance
levels of the b’s and x? tests are lower. The one qualitative difference
is that the evidence against the nonscaled factor model is much
weaker; I return to this point below. Overall, the iterated GMM esti-

! Hansen and Jagannathan (1991a) advocate an alternative prespecified weighting
matrix, the second-moment matrix of returns,

min{E (mr — p)'E(rr')"'E(mr — p)}.

This weighting matrix, like the one-step efficient GMM outlined in n. 8, has an impor-
tant advantage over the identity matrix: it produces an estimate that is invariant to
units and portfolio formation. In particular, it is invariant to the choice of units of the
instruments; using 2z in place of z makes no difference, where it would double the
attention the identity weighting matrix pays to returns scaled by z ratios. Because of
this sensitivity, I had to carefully choose the units of the instruments. On the other
hand, the return second-moment matrix is very nearly singular: E(rr') = E(r)E(r’) +
cov(r, r'), so one takes an already near-singular covariance matrix and adds a singular
matrix, typically one with much larger elements. Therefore, its eigenvectors feature
much stronger long and short positions, and no more economic justification, than the
eigenvectors of the S matrix as graphed in fig. 1. Estimates with this weighting matrix
can produce large pricing errors on the original assets. Also, I use the root mean
square error (RMSE) expected return errors or o’s and plots of o’s as a diagnostic.
Using the identity weighting matrix, GMM picks parameters to do best by this diagnos-
tic; we avoid the confusion that a model might fit better by the estimate but look worse
in the RMSE a diagnostic.



TABLE 2

FIrRsT-STAGE GMM ESTIMATES AND TESTS OF INVESTMENT RETURN FACTOR MODEL

A. NONSCALED MODEL

PARAMETER ESTIMATES

b0 bnr br
Unconditional Estimates
Coefficient -9.5 99 —88
t-statistic -.11 1.10 -3.27
Conditional Estimates
Coefficient —-293 408 -109
t-statistic -1.70 2.23 -2.93
TESTS
byys O, Jr Stock Jr
Unconditional Estimates
x2 1.2 8.4
Degrees of freedom 2 8
p-value (%) 27 40
Conditional Estimates
x2 10.7 12.4 11.3
Degrees of freedom 2 14 12
p-value (%) 47 57 51
B. ScarLED FacTOR MODEL: CONDITIONAL ESTIMATES
PARAMETER ESTIMATES
b0 bnr br bnr'tp br'tp bn'r'dp br~dp
Coefficient -38 131 -90 50 -50 —-44 44
t-statistic -.30 .74 -1.04 2.03 -2.03 -1.07 1.06
TESsTS
Joint b = 0
No bg Unscaled Scaled All nr All r Jr
x2 17.4 1.1 9.3 5.3 5.4 12.3
Degrees of freedom 6 2 4 3 3 10
p-value (%) .8 58 5.5 15 15 27

Note.—The same estimates and tests as given in table 1, except first-stage GMM (identity weighting matrix)
rather than iterated or optimal GMM estimates and tests.
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mates and tests pass the robustness check that they are not too differ-
ent from first-stage estimates and tests.

D. Pricing Errors

Expected return pricing errors or a’s are a useful characterization
of a model’s performance. Examining them helps to guard against
accepting an uninteresting model: one that prices assets badly but
produces large enough standard errors not to be rejected by the J;
statistic. It also helps to guard against the equally dangerous possibil-
ity of rejecting a good model: one that produces economically tiny
pricing errors, but such small standard errors that the model is still
statistically rejected.

Figure 2 presents the predicted versus actual mean excess returns
for the nonscaled model (fig. 2a), the conditional estimates of the
nonscaled model (fig. 2b), and the scaled model (fig. 2c). These values
are calculated from equation (22). The straight line in each panel is
the 45° line, along which all the assets should lie. Starting from the
lower left of figure 2a, we have the Treasury-bill rate and two invest-
ment excess returns. The placement of the investment returns is not
an essential feature of the model. It is easy to produce investment
returns that lie farther apart or at different places along the line in
figure 2, yet price about as well, by different choices of the fixed
parameters m and 8. The group of assets up and to the right are the
decile portfolios, with the smaller-size firm deciles farther out on
the graph. In figure 2b and ¢, there are three triangles for each asset,
corresponding to the asset and the asset scaled by each of the two
instruments.

Figure 2 presents o’s calculated from the first-stage estimates. The
first-stage GMM estimate basically minimizes RMSE a’s, so if we com-
pare models by a plots or RMSE a’s, we know that each model will
fit as well as possible along this dimension. For comparison, figure
3 presents the iterated GMM predicted versus actual mean excess re-
turns. The Treasury-bill pricing error is dramatic: its excess return
is predicted at —4.6 percent, but the actual value is, of course,
zero. This occurs because, as discussed above regarding figure 1, the
Treasury-bill moment condition is very imprecisely measured; iterated
GMM therefore pays little attention to the Treasury-bill return in
order to better price the other assets. The iterated GMM estimates
do a reasonably good job of pricing the remaining portfolios. Still,
the spread is larger than in the first-stage estimates. The iterated
GMM estimate would of course produce smaller pricing errors for
the S eigenvalue portfolios such as shown in figure 1, whose pricing
errors it minimizes.
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Fic. 3.—Predicted vs. actual mean excess returns, scaled investment return factor
pricing model, iterated GMM estimate.

Itis a good check that the iterated GMM pricing errors are not that
different from the first-stage pricing errors, at least for the interesting
assets. If the iterated GMM estimates produced wild pricing errors
for the original assets in order to minimize the pricing errors of the
S eigenvalue portfolios, we might suspect that the GMM estimates
are not that reliable or that something is wrong with the model.
Hence, the iterated GMM estimates pass another important ro-
bustness check.

The difference between figure 2 and figure 3 dramatizes a point
made by Kandel and Stambaugh (1995): pricing error graphs are not
robust to portfolio reformation. As long as the pricing errors are not
zero, one can find a repackaging of portfolios to make graphs like
figures 2 and 3 look arbitrarily good or bad. Therefore, it is important
to examine a model’s ability to explain the expected returns of eco-
nomically interesting portfolios.

The main difference between first-stage estimates of table 2 and
iterated estimates of table 1 is that the scaled factors seem only mar-
ginally statistically useful in the first-stage estimates. The conditional
estimate of the nonscaled model fails to reject with p-values around
50 percent instead of the 4-7 percent p-values from the iterated
estimate, and the scaled factors have only a 5.5 percent p-value in the
scaled factor model.
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However, the pricing errors or a’s presented in figure 2 suggest
that scaled factors are indeed important, since the pricing errors of
the scaled factor model (fig. 2¢) are decidedly smaller. Table 3 collects
RMSE a’s for a variety of models and tells the same story: the scaled
model achieves an RMSE a of 0.15 percent, whereas the nonscaled
model achieves only 0.42 percent, more than twice as much.

Part of the story for the decline in pricing errors with a scaled
model is degrees of freedom: one always lowers the objective by add-
ing more factors. The other part of the story is the danger of ac-
cepting models with large pricing errors but even larger standard
errors. The sampling variance of the moments estimated in the non-
scaled factor model is a good deal larger than for the scaled factor
model. Thus larger pricing errors are less statistically significant. One
way to see this point is in the fact that the nonscaled factor model is
not rejected with a 57 percent p-value, yet we reject elimination of
the scaled factors from the scaled factor model—using the scaled fac-
tor model variance-covariance matrix in the test—with a 5.5 percent
p-value.

All the sample pricing errors are far from individually statistically
significant (I use the diagonal elements of eq. [15] to calculate individ-
ual moment standard errors). The J test is based on a weighted sum
of squares of the pricing errors plotted in figure 2. When it does not
reject (tables 1 and 2), the pricing errors are jointly insignificant as
well.

VI. Comparison with Other Models

The overidentifying restrictions (J;) test the investment return
model against no specific alternative. But all currently available non-
trivial models can undoubtedly be statistically rejected if one uses a
sufficiently rich set of assets and instruments and a long enough
sample. Therefore, it may be more interesting to compare a given
model to plausible competitors rather than simply reject or fail to
reject it.

In this section, I compare the investment return model to the capi-
tal asset pricing model (CAPM), the Chen, Roll, and Ross (1986)
factor model, the consumption-based model, and two ad hoc macro
factor models. In each case, I estimate, test, and examine the compet-
ing model, in the style of tables 1 and 2 and figure 2. Then I estimate
models that include both investment return and the other factors, to
see which set of factors can be deleted in the presence of the other.
The RMSE pricing errors and pricing error graphs like figure 2 pro-
vide an economic counterpart to the statistical comparison.
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A. CAPM
Estimates and Tests of the CAPM

The CAPM is a single-factor model with the market return ™ as
the factor, m = by, + b,r™.!' Thus it trivially maps into the factor
pricing—GMM framework outlined above.

Table 4 presents GMM estimates and tests of the CAPM. This esti-
mation does not include any investment returns. The pattern of re-
sults is similar to that of the investment return factor model. In the
unconditional estimates of the nonscaled model, the market return
is a significant factor, with ¢-statistics of —3.2 (first-stage) and —3.5
(iterated). The J; test does not reject with a 95 percent p-value. In
the conditional estimates, the market return prices even more signifi-
cantly, but the ] test soundly rejects the model with a 0.7-1.6 percent
p-value. However, in many derivations, the CAPM is a one-period or
conditional model, so we should include scaled factors. When we do
so (panel B), the &’s are individually and jointly significant. In contrast
to the investment model, however, the overidentifying restrictions of
the scaled model are now rejected at a 2.6 percent p-value in the
iterated GMM estimates, and nearly rejected at a 7.7 percent p-value
even at the first stage. Overall, the first-stage and iterated estimates
are similar in this table, with the iterated estimates giving slightly
stronger statistical results.

Comparison Tests

Do the investment returns drive out the market return or vice versa?
In a factor model that includes both the market and the investment
returns, which factors are significant for pricing assets?

Table 5 collects such comparison tests. There are three tests: Wald
tests for joint b = 0 conducted with the first- and second-stage esti-
mates and x? difference tests conducted by eliminating each set of
factors in turn during the iterated GMM estimates. I compare scaled
and nonscaled models separately. All the comparison tests are based
on conditional estimates, including scaled returns.

The estimates in this table do include investment returns, for two
reasons. First, including investment return moments is important for
estimating the production function parameters mpk,,, mpk,. Second,
we are interested in finding models that not only price financial assets
but relate asset prices to events in the macroeconomy. To guard

1 The CAPM can also be specified with the excess market return as the factor, m =
by + b (™ — 7/), or with the market return and risk-free rate or zero beta rate as two
factors, m = bor/ + byr™.



TABLE 4
GMM EsTIMATES AND TEsTS oF CAPM

A. NONSCALED MODEL m = by + b, "

PARAMETER ESTIMATES

Unconditional
Estimates Conditional Estimates
bo b, by by
First-stage:
Coefhficient 6.5 -54 9.5 -84
t-statistic 3.74 -3.21 5.53 -5.05
Iterated:
Coefficient 6.7 -5.6 9.8 —8.6
t-statistic 4.08 -3.53 5.94 —5.42
TEsTS
Unconditional Estimates Conditional Estimates
Jr Jr
First-stage:
2 3.3 26
Degrees of freedom 9 11
p-value (%) 95 71
Iterated:
x2 3.3 23
Degrees of freedom 9 11
p-value (%) 95 1.55

B. ScALED MODEL m = by + b,r™ + by(r™ X tp) + bg(r™ X dp):
CONDITIONAL ESTIMATES

PARAMETER ESTIMATES

by bm bl[l de
First-stage:
Coefficient 4.56 —2.66 -.33 -.39
t-statistic 1.48 —-.80 -1.32 -2.05
Iterated:
Coefficient 5.88 -4.62 .24 —.36
t-statistic 3.51 -2.70 2.26 —3.62
TESsTS
s byys by Scaled b Jr
First-stage:
X 59 4.9 15.6
Degrees of freedom 3 2 9
p-value (%) .00 8.6 7.7
Iterated:
x? 67 15 18.9
Degrees of freedom 3 2 9
p-value (%) .00 .06 2.6

NoTe.—r™ is the value-weighted NYSE return. No investment returns are included.
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TABLE 5
MobpeEL COMPARISON TESTS

A. NONSCALED INVESTMENT RETURN MODEL

ALTERNATIVE MODEL

Static

CAPM CRR Ac™Y Ac
Omitted factors r rm r crr r c r c
Degrees of freedom 2 1 2 5 2 1 2 1
First-stage x> 5.0 .09 3.8 2.3 11 .01 8.3 2.5
p-value (%) 8.2 76 15 81 4 91 1.6 12
Iterated x° 13.5 .68 2.0 5.4 26 .01 32 29
p-value (%) .1 41 37 37 .00 94 .00 .00
AJr x? 11.5 .68 1.7 5.4 27 .15 28 20
p-value (%) 3 41 43 37 .00 70 .00 .00

B. ScaLED INVESTMENT RETURN MODEL
ALTERNATIVE MODEL

Scaled

CAPM CRR Ac™Y Scaled Ac
Omitted factors r ™ r crr r c r c
Degrees of freedom 6 3 6 5 6 1 6 3
First-stage x> 8.8 96 64 1.9 24 .00 98 44
p-value (% 19 81 38 85 .05 95 13 93
Iterated x 14.2 7.6 5.9 1.9 29 .06 13 2.4
p-value (%) 2.8 5.6 43 87 .01 80 4.4 50
AJr x? 13 9.5 17 1.9 29 2.6 12 3.1
p-value (%) 4.5 4 1.1 87 .01 11 5.3 37

Note.—Tests for joint b; = 0 in models my = by + bjr' + byf, where ' denotes investment returns and f
denotes additional factors [{sted in each column. All tests are based on conditional moments: deciles 1, 2, 5, and
10, the Treasury-bill return, and investment returns, scaled by the constant, term premium, and dividend/price
ratio. First-stage and iterated give Wald tests based on the indicated GMM estimate; AJ7 gives rise in the GMM
objective when one set of factors is excluded.

against the danger that the comparison tests are driven by the invest-
ment returns, I include first-stage estimates and I compare stock re-
turn pricing errors.

The nonscaled model tests favor the investment return model. In
the first stage, there is an 8.2 percent p-value for dropping the invest-
ment return factors, compared to 76 percent for dropping the market
return. Iterated estimates and the AJ; test raise this to 0.1-0.3
percent p-values for dropping the investment return factors, against
41 percent for dropping the market. Here and below, the similarity
of Wald and AJ; tests is comforting.

When we compare the scaled investment return model to the scaled
CAPM, the table suggests that each set of factors is statistically impor-
tant in the presence of the others. In the first stage, we cannot reject
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eliminating either set of factors, though the investment factors have
somewhat stronger evidence (p-value 19 percent) than the market
factors (p-value 81 percent). The iterated GMM Wald tests reject
exclusion of the investment return factors (p-value 2.8 percent) but
borderline reject exclusion of the scaled market factors (p-value 5.6
percent); but the AJ; tests neatly reverse the pattern of these p-values,
and small differences in p-values based on asymptotic distributions
are a dangerous decision criterion.

Pricing Errors

Figure 4 plots the pricing errors or o’s for the CAPM. In the uncondi-
tional estimates of the nonscaled model (fig. 4a), we see visually the
nice fit suggested by the statistics in table 4. The outlier on the top
right is the well-known small-firm effect. The point estimate gives a
small-firm o of 0.23 percent per quarter, or about 1 percent per year.

The static CAPM has more difficulty with conditioning informa-
tion, as seen in figure 4b. The four assets below the 45° line are the
unscaled portfolios, with the scaled portfolios above the line. These
pricing errors are much larger than the small-firm effect found in
the unconditional estimates in figure 4a.

The scaled CAPM does a somewhat better job of handling condi-
tioning information, as seen in figure 4¢c. However, the pricing errors
are still fairly large, and this lies behind the statistical rejection shown
in table 4. Even with scaled factors, the CAPM cannot price the scaled
returns. This observation helps to give us some confidence that the
investment model was not performing well only because of scaling.

Note also that the small-firm effect disappears once we include
scaled market returns as factors. Thus the apparent small-firm effect
may simply be due to inadequate treatment of conditioning informa-
tion. Most derivations of the CAPM specify that the market is condi-
tionally, but not unconditionally, mean-variance efficient, so this re-
sult is not too surprising. (It may also be due to a specific failure of
the CAPM: none of the other models displays a small-firm effect.)

The pricing error in table 3 confirms the better visual fit of the
investment return model in figure 2 versus the CAPM in figure 4.
The unconditional estimate of the nonscaled CAPM produces a 0.09
percent RMSE a, about the same as the 0.11 percent value from the
corresponding investment return model. However, the investment
return model produces better than half the RMSE pricing errors
in the conditional estimate: 0.46 percent versus 0.94 percent in the
nonscaled model and 0.19 percent versus 0.49 percent in the scaled
model.

Table 3 includes the RMSE pricing error for a model containing
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both investment return and market factors, so we can see the effect
of dropping either set of factors in the style of the model comparison
tests of table 5. The investment return plus market model does not do
meaningfully better than the investment return model taken alone:
reductions from 0.42 percent to 0.41 percent or 0.46 percent to 0.45
percent for the nonscaled model and 0.15 percent to 0.12 percent
or 0.19 percent to 0.15 percent for the scaled model. However, the
investment return plus market return model seems to do meaning-
fully better than the CAPM, reducing pricing errors by one-half.

In summary, the pricing errors confirm the statistical tests for the
nonscaled models: the investment return model does better than the
static CAPM and drives out the CAPM factors. For the scaled models,
the statistical tests found both investment and market factors impor-
tant. However, we find that the rise in pricing error when investment
return factors are omitted is economically large, even if statistically
small, and the rise in pricing error when market return factors are
omitted is not economically meaningful, even if statistically signifi-
cant.

B. Chen, Roll, and Ross Model

The Chen, Roll, and Ross (1986) (CRR) model was explicitly designed
to link stock returns to economic fluctuations, and Chen, Roll, and
Ross claim that their model drives out the market return. Thus it is
an important alternative model to examine. Chen, Roll, and Ross
advocate a five-factor model, in which the factors are MP (growth in
industrial production), DEI (change in inflation forecast), UI (infla-
tion forecast residual), UPR (return on corporate bonds minus return
on 10-year government bonds), and UTS (return on 10-year govern-
ment bonds minus return on bills). All but MP are based on bond
returns (the inflation forecasts are based on Treasury-bill returns).

Table 6 presents GMM estimates and tests of the CRR model. The
table presents only iterated estimates, since first-stage estimates were
not different enough to warrant an extra set of numbers. Similarly,
the AJ; tests were almost identical to Wald tests, so I omitted them
from the table.

In the unconditional estimates, only one of the CRR factors is in-
dividually significant, though they are jointly marginally significant
with a 6.1 percent p-value. However, in the more efficient conditional
estimate, two factors are individually significant, and the factors to-
gether are jointly significant with a 3.6 percent p-value. The model
is comfortably not rejected by the J; test, with 95 percent and 64
percent p-values.

It is not clear whether Chen, Roll, and Ross intend their model as
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TABLE 6
CHEN, RoLL, AND Ross MODEL

A. PARAMETER ESTIMATES

bO bmp bdei bui bupr buls
Unconditional Estimates
Coefficient 1.0 -1.4 -7.5 41 — 54 -19
t-statistic 4.58 -.25 -.11 1.14 -1.88 —-2.43

Conditional Estimates

Coefficient 1.8 —-25 —68 -51 75 -.37
t-statistic 4.36 -2.30 —.51 —.82 2.39 -.03
B. Tests
bmp-uls =0 JT
Unconditional Estimates
x2 10.6 1.15
Degrees of freedom 5 5
p-valu&: (%) 6.1 95
Conditional Estimates

x2 11.9 5.13
Degrees of freedom 5 7
p-value (%) 3.6 64

NoOTE.—Asset returns are deciles 1-10 in the unconditional estimates and deciles 1, 2, 5, and 10 scaled by the
constant, term premium, and dividend/price ratio in the conditional estimates. Assets do not include investment
returns.

a conditional or unconditional factor model. Their test allows some
variation in 8’s but imposes constant factor risk premia (\’s), and they
only attempt to explain unconditional expected returns. Pragmati-
cally, I do not include a scaled Chen, Roll, and Ross model since it
would have 1 + (3 X 5) = 16 b parameters and I use only 13 asset
return moments. One can use more moments, of course, but a com-
fortable moments/parameters ratio would leave us with an uncom-
fortable data points/moments ratio.

The column marked “CRR” in table 5 presents a comparison of
the investment model with the CRR model. The AJ; test of the scaled
model strongly rejects dropping the investment return factors in the
presence of the CRR factors. Otherwise, the table suggests that either
set of factors can be dropped in the presence of the others. This is
good news: it means that the investment return model can explain
the relatively good fit of the CRR model.

Figure 5 plots the first-stage pricing errors and confirms the nice



608 JOURNAL OF POLITICAL ECONOMY

3.2 [

2.8 \-

0.8

Mean Excess Return. 7 per gtr.

0.0 L L L s L s . )
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

Predicted Mean Excess Return, 7Z per gtr.

AL

Mean Excess Return. 7Z per gtr.

Predicted Mean Excess Return, 7 per qtr.

Fic. 5.—Predicted vs. actual mean excess returns, Chen et al. model, first-stage
estimates: a, unconditional estimates; b, conditional estimates.

fit, at least for the unconditional estimates. Keep in mind, though,
that the model has six factors to fit 11 moments in the unconditional
estimates and 13 moments in the conditional estimates. The fit in
these plots does not correct for degrees of freedom.

Comparing figure 5 with the investment return pricing errors in
figure 2 and examining the pricing error in table 3, we see that the
CRR model gives stock return pricing errors of 0.33 percent, about
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halfway between the nonscaled (0.46 percent) and scaled (0.19 per-
cent) investment return factor model. Thus the scaled investment
return factor may provide an economically interesting improvement
over the CRR model.

C. Consumption-Based Model

The consumption-based model is based on a measure of consumers’
intertemporal marginal rate of substitution, where the investment
model is based on a measure of firms’ intertemporal marginal rate
of transformation. It is perhaps the most appropriate comparison for
the investment return factor model. Like the investment model, the
consumption-based model relates asset returns strictly to macroeco-
nomic data rather than other asset returns. It also provides an explicit
link between asset return and macroeconomic events.

I limit my comparisons to the standard time-separable constant
relative risk aversion formulation, which is about the same level of
simplicity as this investment return model. It is possible that one of
the many variations on the consumption-based model, such as habit
persistence, durability, and so forth, may perform better than this
simple model. (Campbell and Cochrane [1995] certainly hope so!)
But it is also possible that one of the many possible variations on the
investment model, such as production shocks, gestation lags, and so
forth, performs better still.

Table 7 presents GMM estimates and tests of the basic consump-
tion-based model. The model predicts that

¢, \ "

regardless of conditioning information, so I do not consider scaled
consumption factors. The vy estimates are huge and the B’s are often
larger than one. This is the equity premium puzzle, a familiar pattern
when this model tries to explain the cross section of asset returns.
The pricing errors for the unconditional estimates in figure 6a are
huge. However, the imprecision of the estimate is so high that the
unconditionally estimated model cannot be rejected by the ], test—a
graphic illustration of the dangers of looking only at ] tests and not
also the underlying pricing errors. Figure 6b shows that, like the
CAPM, this consumption-based model has great trouble reconciling
conditional and unconditional moments. In this case the pricing er-
rors are so large that the model is resoundingly rejected by the J,
test with p-values of 0.3 percent in the first-stage estimate and 0.04
percent in the iterated estimate. Table 3 confirms the visual picture:
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TABLE 7

CONSUMPTION-BASED MODEL

PARAMETER ESTIMATES

Unconditional
Estimates Conditional Estimates
B b B Y
First-stage:
Coefficient .98 241 1.29 153
t-statistic .49 .61 6.39 1.56
Iterated:
Coefficient 1.27 71 1.29 116
t-statistic 10.9 2.17 13.9 3.36
TEsTs
Unconditional Estimates Conditional Estimates
Jr Jr
First-stage:
2 6.17 28
Degrees of freedom 9 11
p-value (%) 72 .30
Iterated:
2 11.3 339
Degrees of freedom 9 11
p-value (%) - 26 .04
NoTe.—GMM estimates and tests of consumption-based model: m,,; = B(c 4 /c,)”Y. Asset returns are deciles

1-10 in the unconditional estimatesand deciles 1, 2, 5, and 10 scaled by the constant, term premium, and dividend/
price ratio in the conditional estimates. Assets do not include investment returns.

the RMSE pricing error of the consumption-based model is 2.86 per-
cent, 10 times higher than that of any of the other models.

The column marked Ac™" in table 5 presents a comparison of the
investment model against the consumption-based model. The un-
restricted model here is m = b, + bir’ + BAc™". Not surprisingly,
all the tests decisively reject omitting the investment return factors,
with p-values less than 1 percent and mostly less than 0.01 percent,
while never rejecting dropping the A¢~" factor.

D. Consumption Growth Factor Model

Perhaps consumption is not at fault, but the tight structure implied by
the utility function and absence of free b parameters in the consump-
tion-based model. Linearized versions of the consumption-based
model such as Brown and Gibbons (1985) have been more successful.
In this spirit, consider the model

My = by + by Acyyy,
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stage estimates: a, unconditional estimates; b, conditional estimates.

where Ac,,, denotes consumption growth, and a similar model with
scaled factors.

Table 8 presents iterated GMM estimates of this model (the first
stage was not different enough to warrant an extra set of numbers).
A familiar pattern emerges: in the unconditional estimates, consump-
tion growth significantly prices assets and the model is not rejected.
In the conditional estimates, consumption growth prices more signifi-
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TABLE 8
CoNsuMPTION GROWTH FACTOR MODEL

A. NonscALED FACTOR MODEL m = by + by Ac

PARAMETER ESTIMATES

Unconditional
Estimates Conditional Estimates
Constant Ac Constant Ac
Coefficient 92 -90 108 -107
¢-statistic 2.32 -2.30 2.84 —-2.81
TESTS
Unconditional Estimates Conditional Estimates
Jr Jr
x2 9.88 34.8
Degrees of freedom 9 11
p-value (%) 36 .03

B. ScaLED FACTOR MODEL m = by + by Ac + by(Ac X tp) + by(Ac X tp):
CONDITIONAL ESTIMATES

PARAMETER ESTIMATES

by ba, by by
Coefficient 105 -102 -.31 -.53
t-statistic 2.73 —-2.68 -1.76 —4.74
TESTS

Scaled b = 0 Jr
x2 33 17
Degrees of freedom 2 9
p-value (%) .00 4.6

Note.—Iterated GMM tests of consumption growth factor model. Asset returns are deciles 1-10 in the uncondi-
tional estimates and deciles 1, 2, 5, and 10 scaled by the constant, term premium, and dividend/price ratio in the
conditional estimates. Assets do not include investment returns. Wald and A/ joint b tests give the same results,
so they are not separately presented.

cantly, but the model is decisively rejected, with a 0.03 percent p-value
that is much lower than corresponding rejections of the investment
return factor model and the CAPM. Scaling helps: the scaled factors
are mostly individually significant and jointly highly significant, and
the model is now only borderline rejected with a 4.6 percent p-value.

The consumption-based factor model does not do all that well when
compared to the investment return model in comparison tests in table
5, in pricing error comparisons in table 3, and by examination of the
pricing errors in figure 7, however. In table 5, we reject exclusion of
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the consumption growth factor only in the iterated estimate of non-
scaled models; otherwise the evidence against dropping the invest-
ment return factors is much stronger than that against dropping the
consumption growth factors. Figure 7 reveals pricing errors almost
as large as those of the consumption-based model and dramatically
worse than the fit of the other models. Table 3 shows that the RMSE
pricing errors are three times greater than those of their investment
return model and larger than the CAPM as well, whereas the invest-
ment return plus consumption growth model has pricing errors not
much lower than those of the investment return model alone.

In summary, the problem does not seem to be the tight structure
imposed by the consumption-based model, but that consumption data
are less informative about stock returns than investment data.

E. Investment Growth Model

How much of the success of the investment return factor model has
to do with the precise functional forms used to infer investment re-
turns from investment data? To investigate this question, I consider
an ad hoc factor model based on investment growth,

m = by + b,,Ai,, + b,Ai,

and its scaled extension.

Table 9 presents the usual GMM estimates and tests of the invest-
ment growth factor model. Again, I present only second-stage esti-
mates since the first stage was quite similar. The performance is over-
all a little better than the investment return factor model of table 1.
However, this estimate uses fewer moments, since it tries to price only
asset returns and not asset and investment returns simultaneously. As
before, only the residential investment factor prices assets signifi-
cantly in the unconditional estimates, but both factors significantly
price assets in the conditional estimates. The unconditional estimate
of the nonscaled model is not rejected (p-value 26 percent), but now
the conditional estimate is not rejected as well, with a p-value of 65
percent. Given this fact, it is unsurprising that scaling seems not to
be statistically necessary; the scaled investment growth factors are
individually and jointly insignificant. Though the scaled model is not
rejected either with a 32 percent p-value, the J; declines only from
7.8 to 7.0 with a loss of four degrees of freedom.

Figure 8 presents pricing errors. The fit of the 10 deciles is quite
good. The scaled returns are not priced quite as well. As with the
investment return factor model, the statistically marginal or insignifi-
cant improvement from adding scaled factors masks a definite eco-
nomic improvement in the sample pricing errors.The RMSE pricing
errors in table 3 show that this model does about as well as the invest-
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TABLE 9
INVESTMENT GROWTH (Not Return) FAcTOR MODEL

A. NONSCALED MODEL

PARAMETER ESTIMATES

Unconditional Estimates Conditional Estimates
bO bnr br bO bnr br
Coefhicient —-4.2 12.3 -7.1 -51 62 -9.8
t-statistic —-.55 1.56 —-2.59 -2.35 2.86 —-2.62
TEsTS
Unconditional Estimates Conditional Estimates
Jr Jr
x2 10 7.8
Degrees of freedom 8 10
p-value (%) 26 65

B. ScarLEp FacTorR MoDEL: CONDITIONAL ESTIMATES

PARAMETER ESTIMATES

Constant by b, burp by bur.ap br.gp

Coefficient -41 50 -8.3 3.4 -3.2 .15 -.18
t-statistic -1.18 1.38 —-.78 .81 =77 .02 -.03

TEsTS

Unscaled & Scaled b Jr

X 2.0 1.9 7.0
Degrees of freedom 2 4 6
p-value (%) 37 75 32

Note.—Iterated GMM tests of investment growth factor model, using residential (r) and nonresidential (nr) gross
fixed investment. Asset returns are deciles 1—10 in the unconditional estimates and deciles 1, 2, 5, and 10 scaled
by the constant, term premium, and dividend/price ratio in the conditional estimates. Assets do not include invest-
ment returns. Wald and AJr joint b tests give the same results, so they are not separately presented.

ment return factor model, producing 0.51 percent RMSE versus 0.46
percent for the investment return model with nonscaled factors and
0.18 percent versus 0.19 percent for the scaled factor model.

In summary, the good behavior of the investment return factor
model does not depend on the specific functional form.

VII. Concluding Remarks

The simple investment return model performs surprisingly well. The
investment return factors significantly price assets, the model is not
rejected, and it is able to explain a wide spread in expected returns,
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including managed portfolio returns formed by multiplying returns
with instruments. The model performs about as well as two standard
finance models, the CAPM and the Chen, Roll, and Ross factor
model. The investment return model performs substantially better
than the standard consumption-based model and an ad hoc consump-
tion growth factor model. It is robust; an investment growth model
performs about as well.

The fact that any model whose factors are related to economic theory
and are based solely on quantity data is even in a position to challenge
the empirical success of traditional finance models may be regarded as
an encouraging initial success. Since any model can be expressed in
terms of its mimicking portfolios and the latter are better measured,
models based on quantity data or measures of real risk factors are al-
ways at a statistical disadvantage relative to models based on asset re-
turns. And since one can always construct portfolios that perfectly price
any set of assets ex post, the difficulty of obtaining a good fit depends
entirely on the discipline one imposes in the search for factors.

The scaled factor models typically perform substantially better than
the nonscaled factor models. This suggests that time variation in the
parameters of asset pricing models, which can be handled by the
simple expedient of including scaled factors, is an important ingredi-
ent for their empirical success.

A comparison of this paper and Cochrane (1991) with the empirical
g-theory literature suggests that investment responds to changes in risk
premia that the empirical finance literature has found to dominate
changes in expected returns. Most ¢g-theory models specify constant
risk premia and try, without much success, to explain changes in invest-
ment from changes in risk-free rates. The relative success of the model
presented here may help to rehabilitate the g-theory view of invest-
ment, amended to include substantial changes in risk premia over time.

More generally, macroeconomists are interested in the links be-
tween asset returns and fluctuations for the information they can
provide about preferences, technologies, and market structures that
will be useful in the construction of macroeconomic models. One
lesson of these papers is that an adjustment cost (or some wedge
between the price of installed and uninstalled capital), currently not
included in most real business cycle models, is useful in order to
reconcile investment and asset returns.

Appendix
A. Derivation of Investment Returns from the Production Function

This section derives the investment return from the production technology
and shows that the firm’s first-order conditions direct the firm to remove
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arbitrage opportunities between investment and asset returns. This deriva-
tion follows that of Braun (1991); Cochrane (1991) presents a derivation of
the investment return directly from its definition as the marginal extra sale
possible tomorrow from a marginal investment today.

The firm maximizes its present value,

n{la}xE, Z mt,t+j(yl+j - it+j - wl+jll+j)1 (A1)
. -
j=0

subject to (1) and (2).

In a complete market, m are the contingent claims prices divided by proba-
bilities, so this present value is the firm’s time ¢ contingent claim value. If
markets are less than complete, the firm still maximizes (A1), but m is now
an extension of the stochastic discount factor that prices asset returns rather
than the stochastic discount factor for the whole economy. The marginal
utility of a nonsatiated owner of the firm who can also trade assets is one
such m.

I derive the first-order condition by varying i,. Note that Ok, /01, = (1 —
8)J. Hence,

k ) . .
o THJW= (1 =B [fit +j) — cxlt + /).

The notation f;(f) means partial derivative with respect to &, evaluated with
respect to the appropriate arguments at time ¢; f,(t) = of(k,, l,)/ok,. The
first-order condition is then

L+c() =E, D myj(1 = 8)[filt +j) — c4t + ). (A2)

1

©

]

The left-hand side is the relative price of a unit of installed capital versus
output today; the right-hand side is the present value of its benefits.

We desire a model of returns, rather than price and present value. Using
Mypj = Myp41Mpyy,4j, break the right-hand side of (A2) into two pieces:

1+ ¢i(t) = Eymy (1 = B)[fit + 1) — ¢t + 1)]

+ Emg,41(1 = 9) Z Mys,ee145(1 = 8)
i=1

X[filt +1+j) =t + 1+
Substituting (A2) at time ¢ + 1 for the sum in the right-hand side, we get
L4 a(t) = Efmy (1 =) [fit + 1) — 4t + 1) + 1 + ¢i(t + D)]],

(I=3[1+fit+ 1) +c(t+1)— it + l)]]

L= E'[’”““ I+ (e
1

or

1= Et[mt.t+lri+1]’
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with

i

A=)l +filt+ 1)+t + 1) = et + 1)
Tt41 = 1+ c)e '

For some production technologies it is not possible to summarize the price
versus present value relation (A2) in a single-period investment return. For
example, if the adjustment cost depends on p lags of investment, then a
p-period investment strategy must be considered.

B. Data Description

All asset return data are taken from CRSP. National Income and Product
Accounts data and yield data are taken from Citibase. The two investment
returns are based on Citibase series GINQ and GIRQ. The stock return series
are based on CRSP series EWRETD and VWRETD and the size decile return
series DECRET1 ... DECRETI10. The default premium is based on Citibase
series FYBAAC-FYAAAC. Quarterly data are obtained by using the last
month of the quarter. The dividend/price ratio is based on CRSP EWRETD
and EWRETX, the equally weighted portfolio returns with and without divi-
dends. The returns are cumulated for a year to avoid the seasonal in divi-
dends; then d/p = (annual EWRETD/annual EWRETX) — 1. Again, the
last monthly observation in each quarter is the quarterly observation.

The investment data are quarterly averages, and the asset return data are
point-to-point. As an ad hoc correction for this difference, 1 averaged
monthly asset returns over the quarter to correspond with the investment
returns (I thank Campbell Harvey for suggesting this transformation). Thus
the second-quarter return is an average of returns from the last day in De-
cember to the last day in March, the last day in January to the last day in
April, and the last day in February to the last day in May. Instruments for
the second-quarter return are all observed at the end of December (i.e., all
instruments are lagged twice).

I constructed Chen, Roll, and Ross factors as follows: MP is the growth
rate of industrial production. Chen, Roll, and Ross lead this variable by one
month to take account of the fact that industrial production (IP) is a monthly
average and returns are end-of-month to end-of-month. To make the same
adjustment for quarterly data, I average IP growth in a similar way to returns.
For example, the second-quarter MP is

MP = In[IP(Apr)IP(May)IP(Jun)] — In[IP(Jan)IP(Feb)IP(Mar)].

Ul is unexpected inflation and DEI is the change in expected inflation. These
variables require an expected inflation series. Chen, Roll, and Ross take their
values from Fama and Gibbons (1982). Therefore, I replicated the Fama and
Gibbons procedure to extend the data set. Fama and Gibbons start with the
Fisher equation

E,_ (w)=TB,_, — E,_|(R),

where  is Consumer Price Index inflation, TB is the Treasury-Bill rate,
is the ex post real rate, and r = TB,_, — m, They add a univariate time-
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series model for ex post real rates
e — = u, + u,_;.
Substituting, we get
E,_\(m)=TB,_, — 1, - u,

To construct this series, I take Fama and Gibbons’s value of § = (.9223.
I start with 4; = 0. Then I construct u, by

b b —
Tg = T7 = Uy,
™ — 1 = uy + Ouy,

and so forth. The expected real return on Treasury bills is then given by

E, ;" =E,_or® | + (1 — 0.9223)u,_,.
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