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A Additional Results

A.1 Unrestricted forecasts

Table A1 reports the point estimates of the unrestricted regression (1) together with standard
errors and test statistics. The coefficient estimates in Table A1 are plotted in the top panel
of Figure 1, and the R2 and some of the statistics from Table A1 are reported in the right
side of Table 1B. The table shows that the individual-bond regressions have the same high
significance as the regression of average (across maturity) excess returns on forward rates
documented in Table 1A.

A.2 Fama-Bliss

Table A2 presents a full set of estimates and statistics for the Fama-Bliss regressions summa-
rized in Table 2. The main additions are the confidence intervals for R2 and the small-sample
distributions.

The R2 confidence intervals show that the Fama-Bliss regressions do achieve an R2 that
is unlikely under the expectations hypothesis. However, the Fama-Bliss R2 is just above that
confidence interval where the 0.35 R2 were much further above the confidence intervals in
Table A1. Again, the multiple regression provides stronger evidence against the expectations
hypothesis, accounting for the larger number of right hand variables, even accounting for
small-sample distributions.

The small-sample standard errors are larger, and χ2 statistics smaller, than the large-
sample counterparts. The pattern is about the same as for the multiple regressions in Table
1. However, the small-sample statistics still reject. The rejection in Table 1 is stronger with
small-sample statistics as well.

A.3 Comparison with Fama-Bliss

If the return-forecasting factor really is an improvement over other forecasts, it should drive
out other variables, and the Fama-Bliss spread in particular. Table A3 presents multiple
regressions to address this question. In the presence of the Fama-Bliss forward spread, the
coefficients and significance of the return-forecasting factor from Table A2 are unchanged in
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Table A3. The R2 is also unaffected, meaning that the addition of the Fama-Bliss forward
spread does not help to forecast bond returns. In the presence of the return-forecasting factor,
however, the Fama-Bliss slope disappears. Clearly, the return-forecasting factor subsumes
all the predictability of bond returns captured by the Fama-Bliss forward spread.

Table A1. Regressions of 1-year excess returns on all forward rates

Maturity n const. y(1) f (2) f (3) f (4) f (5) R2 Level R2 χ2(5)
2 −1.62 −0.98 0.59 1.21 0.29 −0.89 0.32 0.36 121.8
Large T (0.69) (0.17) (0.40) (0.29) (0.22) (0.17) h0.00i
Small T (0.86) (0.30) (0.50) (0.40) (0.30) (0.28) [0.19, 0.53] 32.9
EH [0.00, 0.17] h0.00i

3 −2.67 −1.78 0.53 3.07 0.38 −1.86 0.34 0.36 113.8
Large T (1.27) (0.30) (0.67) (0.47) (0.41) (0.30) h0.00i
Small T (1.53) (0.53) (0.88) (0.71) (0.53) (0.50) [0.21, 0.55] 38.6
EH [0.00, 0.17] h0.00i

4 −3.80 −2.57 0.87 3.61 1.28 −2.73 0.37 0.39 115.7
Large T (1.73) (0.44) (0.87) (0.59) (0.55) (0.40) h0.00i
Small T (2.03) (0.71) (1.18) (0.94) (0.71) (0.68) [0.24, 0.57] 46.0
EH [0.00, 0.17] h0.00i

5 −4.89 −3.21 1.24 4.11 1.25 −2.83 0.35 0.36 88.2
Large T (2.16) (0.55) (1.03) (0.67) (0.65) (0.49) h0.00i
Small T (2.49) (0.88) (1.46) (1.16) (0.88) (0.85) [0.21, 0.55] 39.2
EH [0.00, 0.17] h0.00i

Notes: The regression equation is

rx
(n)
t+1 = β

(n)
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t + β

(n)
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t + ...+ β

(n)
5 f

(5)
t + ε

(n)
t+1.

R̄2 reports adjusted R2. “Level R2” reports the R2 from a regression using

the level excess return on the left hand side, er
(n)
t+1 − ey

(1)
t . Standard errors are in

parentheses “().” “Large T”standard errors use the 12 lag Hansen-Hodrick GMM
correction for overlap and heteroskedasticity. “Small T” standard errors are based
on 50,000 bootstrapped samples from an unconstrained 12 lag yield VAR. Square
brackets “[]” are 95 percent bootstrap confidence intervals for R2. “EH” imposes
the expectations hypothesis on the bootstrap: We run a 12 lag autoregression
for the 1-year rate and calculate other yields as expected values of the 1-year
rate. “χ2(5)” is the Wald statistic that tests whether the slope coefficients are
jointly zero. The 5 percent and 1 percent critical value for χ2(5) are 11.1 and
15.1. All χ2 statistics are computed with 18 Newey-West lags. “Small T” Wald
statistics are computed from the covariance matrix of parameter estimates across
the bootstrapped samples. Pointed brackets “<>” report probability values.
Data source CRSP, sample 1964:1-2003:12.
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Table A2. Fama-Bliss excess return regressions

Maturity n α β R2 χ2(1) p-value
2 0.07 0.99 0.16
Large T (0.30) (0.26) 18.4 h0.00i
Small T (0.16) (0.33) [0.01, 0.33] 9.1 h0.00i
EH [0.00, 0.12] h0.01i

3 −0.13 1.35 0.17
Large T (0.54) (0.35) 19.2 h0.00i
Small T (0.32) (0.41) [0.01, 0.34] 10.8 h0.00i
EH [0.00, 0.14] h0.01i

4 −0.40 1.61 0.18
Large T (0.75) (0.45) 16.4 h0.00i
Small T (0.48) (0.48) [0.01, 0.34] 11.2 h0.00i
EH [0.00, 0.14] h0.01i

5 −0.09 1.27 0.09
Large T (1.04) (0.58) 5.7 h0.02i
Small T (0.64) (0.64) [0.00, 0.24] 4.0 h0.04i
EH [0.00, 0.14] h0.13i

Notes: The regressions are

rx
(n)
t+1 = α+ β

³
f
(n)
t − y

(1)
t

´
+ ε

(n)
t+1.

Standard errors are in parentheses, bootstrap 95 percent confidence intervals in
square brackets “[]” and probability values in angled brackets “<>”. The 5
percent and 1 percent critical values for a χ2(1) are 3.8 and 6.6. See notes to
Table A1 for details.

Table A3. Contest between γ>f and Fama-Bliss

n an σ (an) bn σ(bn) cn σ(cn) R2

2 0.14 (0.25) 0.46 (0.04) −0.05 (0.21) 0.31
3 0.13 (0.48) 0.87 (0.12) −0.05 (0.41) 0.34
4 −0.03 (0.62) 1.22 (0.16) 0.05 (0.46) 0.37
5 −0.32 (0.71) 1.43 (0.15) 0.15 (0.35) 0.35

Notes: Multiple regression of excess holding period returns on the return-forecasting
factor and Fama-Bliss slope. The regression is

rx
(n)
t+1 = an + bn

¡
γ>ft

¢
+ cn

³
f
(n)
t − y

(1)
t

´
+ ε

(n)
t+1.

Standard errors are in parentheses. See notes to Table A1 for details.
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A.4 Forecasting the short rate

The return-forecasting factor also predicts changes in short-term interest rates. Short rate
forecasts and excess return forecasts are mechanically linked, as emphasized by Fama and
Bliss (1987), but seeing the same phenomenon as a short rate forecast provides a useful
complementary intuition and suggests additional implications. Here, the expectations hy-
pothesis predicts a coefficient of 1.0 — if the forward rate is one percentage point higher than
the short rate, we should see the short rate rise one percentage point on average.

Table A4. Forecasting short rate changes

const. f
(2)
t − y

(1)
t y

(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t R2 χ2

Fama-Bliss
−0.07 0.01 0.00 0.0

Large T (0.30) (0.26) h0.98i
Small T (0.16) (0.33) [0.00, 0.33] 0.0
EH [0.05, 0.29] h1.00i

Unconstrained
1.62 −0.02 0.41 −1.21 −0.29 0.89 0.19 82.7

Large T (0.69) (0.17) (0.40) (0.29) (0.22) (0.17) h0.00i
Small T (0.86) (0.30) (0.50) (0.40) (0.30) (0.28) [0.15, 0.40] 25.0
EH [0.07, 0.32] h0.01i

Notes: The Fama-Bliss regression is

y
(1)
t+1 − y

(1)
t = β0 + β1

³
f
(2)
t − y

(1)
t

´
+ εt+1.

The unconstrained regression equation is

y
(1)
t+1 − y

(1)
t = β0 + β1y

(1)
t + β2f

(2)
t + ...+ β5f

(5)
t + εt+1.

χ2 tests whether all slope coefficients are jointly zero (5 degrees of freedom uncon-
strained, one degree of freedom for Fama-Bliss). Standard errors are in parenthe-
ses, bootstrap 95 percent confidence intervals in square brackets “[]” and percent
probability values in angled brackets “<>”. See notes to Table A1 for details.

The Fama-Bliss regression in Table A4 shows instead that the two year forward spread
has no power to forecast a one year change in the one year rate. Thus, the Fama and
Bliss’s (1987) return forecasts correspond to nearly random-walk behavior in yields. To
find greater forecastability of bond excess returns, our return-forecasting factor must and
does forecast changes in 1-year yields; a positive expected return forecasts implies that bond
prices will rise. Indeed, in the “unconstrained” panel of Table A4, all forward rates together
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have substantial power to predict one-year changes in the short rate. The R2 for short rate
changes rises to 19 percent, and the χ2 test strongly rejects the null that the parameters are
jointly zero.

To understand this phenomenon, note that we can always break the excess return into a
one year yield change and a forward-spot spread,7

(A.1) Et

³
rx

(2)
t+1

´
= −Et

³
y
(1)
t+1 − y

(1)
t

´
+
³
f
(2)
t − y

(1)
t

´
.

Intuitively, you make money either by capital gains, or by higher initial yields. Under
the expectations hypothesis, expected excess returns are constant, so any movement in the
forward spread must be matched by movements in the expected 1-year yield change. If the
forward rate is higher than the spot rate, it must mean that investors must expect a rise in
1-year rates (a decline in long-term bond prices) to keep expected returns the same across
maturities. In Fama and Bliss’s regressions, the expected yield change term is constant, so
changes in expected returns move one-for one with the forward spread. In our regressions,
expected returns move more than changes in the forward spread. The only way to generate
such changes is if the 1-year rate becomes forecastable as well, generating expected capital
gains and losses for long-term bond holders.

Equation (A.1) also means that the regression coefficients which forecast the 1-year rate
change in Table A4 are exactly equal to our return-forecasting factor b2γ

>ft, which forecasts

Et

³
rx

(2)
t+1

´
, minus a coefficient of 1 on the 2-year forward spread. The factor that forecasts

excess returns is also the state variable that forecasts the short rate.

A.5 Additional Lags

Table 5 reports our estimates of γ and α in the simple model for additional lags,

rxt+1 = γ>
h
α0ft + α1ft− 1

12
...+ αkft− k

12

i
+ ε̄

(n)
t+1

Table A5 completes the model by showing how individual bond returns load on the common
return-forecasting variable, i.e. estimates of bn in

rx
(n)
t+1 = bnγ

>
h
α0ft + α1ft− 1

12
+ ...+ αkft− k

12

i
+ ε̄

(n)
t+1

In Panel A, the bn rise with maturity. The b estimates using additional lags are almost
exactly the same as those using only ft, as claimed in the paper.

In Panel B, we see that the R2 for individual regressions mirror the R2 for the forecasts
of bond average (across maturity) returns rx. We also see that the R2 from the restricted
regressions are almost as high as those of the unrestricted regressions, indicating that the
restrictions do little harm to the model’s ability to fit the data. This finding is especially
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cogent in this case, as the unrestricted regressions allow arbitrary coefficients across time
(lags) as well as maturity. For example, with 3 additional lags, the unrestricted regressions
use 4 bonds × 4 lags × (5 forward rates + 1 constant) = 96 parameters, while the restricted
regressions use 4 b +6 γ + 4 α = 14 parameters.

In sum, Table A5 substantiates the claim in the paper that the single-factor model works
just as well with additional lags as it does using only time t right hand variables.

Table A5. Return forecasts with additional lags

A. bn estimates and standard errors
Estimates Standard errors
Lags Lags

0 1 2 3 0 1 2 3
b2 0.47 0.46 0.46 0.46 (0.06) (0.04) (0.04) (0.04)
b3 0.87 0.86 0.86 0.86 (0.11) (0.09) (0.08) (0.08)
b4 1.24 1.23 1.23 1.23 (0.17) (0.13) (0.12) (0.11)
b5 1.43 1.45 1.45 1.46 (0.21) (0.16) (0.15) (0.14)

B. R2

Restricted Unrestricted
Lags Lags

0 1 2 3 0 1 2 3
rx(2) 0.31 0.36 0.37 0.31 0.32 0.37 0.39 0.41
rx(3) 0.34 0.39 0.41 0.41 0.34 0.40 0.42 0.44
rx(4) 0.37 0.42 0.44 0.46 0.37 0.43 0.45 0.47
rx(5) 0.34 0.41 0.43 0.44 0.35 0.41 0.44 0.46
rx 0.35 0.41 0.43 0.44 0.35 0.41 0.43 0.46

Notes: Return forecasts with additional lags, using the restricted model

rx
(n)
t+1 = bnγ

>
h
α0ft + α1ft− 1

12
+ α2ft− 2

12
+ ...+ αkft− k

12

i
+ ε̄

(n)
t+1

Estimates of γ and α are presented in Table 5.

A.6 Eigenvalue factor models for yields

We form the yield curve factors xt used in Table 4 and Figure 2 from an eigenvalue de-
composition of the covariance matrix of yields var(y) = QΛQ> with Q>Q = I, Λ diagonal.
Decompositions based on yield changes, returns, or excess returns are nearly identical. Then
we can write yields in terms of factors as yt = Qxt; cov(xt, x

>
t ) = Λ. Here, the columns of Q

give how much each factor xit moves all yields yt. We can also write xt = Q>yt. Here, the
columns of Q tell you how to recover factors from yields. The top right panel of Figure 2
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plots the first three columns of Q. We label the factors “level,” “slope,” “curvature,” “4-5”
and “W” based on the shape of these loadings. We do not plot the last two small factors
for clarity, and because being so small they are poorly identified separately. W is W shaped,
loading most strongly on the 3 year yield. 4-5 is mostly a 4-5 year yield spread.

We compute the fraction of yield variance due to the kth factor as Λkk/QkΛkk. To
calculate the fraction of yield variance due to the return-forecasting factor, we first run a
regression y

(n)
t = a+ bγ>ft + εt, and then we calculate trace

£
cov(bγ>f)

¤
/trace[cov(y)].

A.7 Eigenvalue factor model for expected excess returns

We discuss in section B. an eigenvalue factor decomposition of the unconstrained expected
excess return covariance matrix. We start with

QΛQ> = cov
£
Et(rxt+1), Et(rxt+1)

>¤ = βcov(ft, f
>
t )β

>.

Now we can write the unconstrained regression

(A.2) Et(rxt+1) = βft = QΓ>ft.

with Γ> = Q>β. Equivalently, we can find the factors Γ by regressing portfolios of expected
returns on forward rates,

Q>rxt+1 = Γ>ft +Q>εt+1.

Table A6 presents the results. The first column of Q in Panel A tells us how the first
expected-return factor moves expected returns of bonds of different maturities. The coef-
ficients rise smoothly from 0.21 to 0.68. This column is the equivalent of the b coefficients
in our single-factor model Et(rxt+1) = bγ>. The corresponding first row of Γ> in Panel B
is very nearly our tent-shaped function of forward rates. Expressed as a function of yields
it displays almost exactly the pattern of the top left panel in Figure 2: a rising function of
yields with a strong 4-5 spread.

The remaining columns of Q and rows of Γ> show the structure summarized by simple
portfolio regressions in the text. When a portfolio loads strongly on one bond in Panel
A, that bond’s yield is important for forecasting that portfolio in Panel C. The remaining
factors seem to be linear combinations (organized by variance) of the pattern shown in Table
7. Individual bond “pricing errors” in yields seem to be reversed.

The bottom two rows of Panel A give the variance decomposition. The first factor
captures almost all of the variation in expected excess returns. Its standard deviation at 5.16
percentage points dominates the 0.26, 0.16 and 0.20 percentage point standard deviations
of the other factors. Squared, to express the result as fractions of variance, the first factor
accounts for 99.5 percent of the variance of expected returns.
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Table A6. Factor decomposition for expected excess returns

A. Q matrix of loadings
Factor

Maturity 1 2 3 4
2 0.21 0.27 -0.69 0.64
3 0.40 0.84 0.34 -0.11
4 0.58 -0.16 -0.48 -0.64
5 0.68 -0.44 0.41 0.41

σ(factor) 5.16 0.26 0.16 0.20
Percent of var 99.51 0.25 0.09 0.15

B. Γ> matrix; forecasting the portfolios

Factor y
(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t

1 -4.58 1.68 6.36 1.81 -4.43
2 0.05 -0.07 0.54 -0.35 -0.13
3 -0.04 -0.12 0.20 -0.16 0.10
4 -0.10 0.27 -0.19 -0.17 0.23

C. Γ> matrix with yields

Factor y
(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

1 -6.27 -9.35 13.66 24.94 -22.14
2 0.12 -1.24 2.69 -0.89 -0.65
3 -0.08 -0.64 1.01 -1.07 0.51
4 0.37 0.93 -0.07 -1.58 1.13

Notes: We start with the unconstrained forecasting regressions

rx
(n)
t+1 = β(n)ft + ε

(n)
t+1.

Then, we perform an eigenvalue decomposition of the covariance matrix of ex-
pected excess returns,

QΛQ> = cov
£
Et(rxt+1), Et(rxt+1)

>¤ = βcov(ft, f
>
t )β

>.

Panel A gives the Q matrix. The last two rows of panel A give
√
Λi and Λi/

P
Λi

respectively. Panels B and C give regression coefficients in forecasting regressions

Q>rxt+1 = Γ>ft +Q>εt+1

Q>rxt+1 = Γ>yt +Q>εt+1.
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A.8 What measurement error can and cannot do

To understand the pattern of Figure 4, write the left hand variable as

rx
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t + p

(1)
t

= p
(n−1)
t+1 + ny

(n)
t − y

(1)
t .

Now, consider a regression of this return on to time-t variables. Clearly, measurement error
in prices, forward rates or yields — anything that introduces spurious variation in time-t
variables — will induce a coefficient of −1 on the one year yield and +n on the n−year yield,
as shown in the bottom panel of Figure 4. Similarly, if we write the left hand variable in
terms of forward rates as

rx
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t + p

(1)
t

= p
(n−1)
t+1 +

h
−p(n)t + p

(n−1)
t

i
+
h
−p(n−1)t + p

(n−2)
t

i
+ · · ·+

h
−p(2)t + p

(1)
t

i
· · ·− p

(1)
t + p

(1)
t

= p
(n−1)
t+1 + 0× y

(1)
t + 1× f

(1→2)
t + 1× f

(2→3)
t + · · ·+ 1× f

(n−1→n)
t

we see the step-function pattern shown in the top panel of Figure 4.

The crucial requirement for this pattern to emerge as a result of measurement error is that
the measurement error at time t must be uncorrelated with in p

(n−1)
t+1 on the left hand side.

If measurement error at time t is correlated with the measured variable at time t+ 1, then
other time-t variables may seem to forecast returns, or the 1 and n year yield may forecast
it with different patterns. Of course, the usual specification of i.i.d. measurement error is
more than adequate for this conclusion. Also, measurement error must be uncorrelated with
the true right hand variables, as we usually specify. Measurement errors correlated across
maturity at a given time will not change this pattern. Multiple regressions orthogonalize
right hand variables.

B Robustness checks

We investigate a number of desirable robustness checks. We show that the results obtain
in the McCulloch-Kwan data set. We show that the results are stable across subsamples.
In particular, the results are stronger in the low-inflation 1990s than they are in the high-
inflation 1970s. This finding comfortingly suggests a premium for real rather than nominal
interest rate risk. We show that the results obtain with real-time forecasts, rather than
using the full sample to estimate regression coefficients. We construct “trading rule” profits,
examine their behavior, and examine real-time trading rules as well. The trading rules
improve substantially on those using Fama-Bliss slope forecasts.
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B.1 Other data

The Fama-Bliss data are interpolated zero-coupon yields. In Table A7, we run the regressions
with McCulloch-Kwon data, which use a different interpolation scheme to derive zero-coupon
yields from Treasury bond data. Table A7 also compares the R2 and γ estimates using
McCulloch-Kwon and Fama-Bliss data over the McCulloch-Kwon sample (1964:1-1991:2).
Clearly, the tent-shape of γ estimates and R2 are very similar across the two datasets.

Table A7. Comparison with McCulloch-Kwon data

A. R2

All ft γ>ft f
(n)
t − y

(1)
t

n M-K F-B M-K F-B M-K F-B
2 0.39 0.39 0.39 0.39 0.16 0.15
3 0.37 0.40 0.37 0.40 0.15 0.16
4 0.36 0.42 0.36 0.43 0.13 0.17
5 0.35 0.38 0.35 0.39 0.12 0.05

B. Coefficients
Dataset γ0 γ1 γ2 γ3 γ4 γ5
McCulloch-Kwon −5.11 −2.52 1.78 3.19 1.94 −3.82
Fama-Bliss −4.65 −1.91 1.11 2.98 0.51 −2.17

Notes: The data are McCulloch-Kwon and Fama-Bliss zero-coupon yields start-
ing 1964:1 until the end of the McCulloch-Kwon dataset, 1991:12. The upper
panel shows R2 from the regressions corresponding to Table 1. The regressions
run excess log returns rx

(n)
t+1 on the regressors indicated on top of the table: all

forwards ft, the return-forecasting factor γ
>ft, and the forward spread f

(n)
t −y

(1)
t .

The lower panel shows the estimated γ coefficients in the regression of average
returns on forward rates rxt+1 = γ>ft + εt+1. McCulloch-Kwon data are down-
loaded from http://www.econ.ohio-state.edu/jhm/ts/mcckwon/mccull.htm.

B.2 Subsamples

Table A8 reports a breakdown by subsamples of the regression of average (across maturity)
excess returns rxt+1 on forward rates. The first set of columns run the average return on the
forward rates separately. The second set of columns runs the average return on the return-
forecasting factor γ>f where γ is estimated from the full sample. The latter regression
moderates the tendency to find spurious forecastability with five right hand variables in
short time periods.

The first row of Table A8 reminds us of the full sample result — the pretty tent-shaped
coefficients and the 0.35 R2. Of course, if you run a regression on its own fitted value you
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get a coefficient of 1.0 and the same R2, as shown in the two right hand columns of the first
row.

The second set of rows examine the period before, during, and after the 1979:8-1982:10
episode, when the Fed changed operating procedures, interest rates were very volatile, and
inflation declined and stabilized. The broad pattern of coefficients is the same before and
after. The 0.78R2 looks dramatic during the experiment, but this period really only has three
data points and 5 right hand variables. When we constrain the pattern of the coefficients in
the right hand pair of columns, the R2 is the same as the earlier period.

The last set of rows break down the regression by decades. Again, the pattern of coef-
ficients is stable. The R2 is worst in the 70s, a decade dominated by inflation, but the R2

rises to a dramatic 0.71 in the 1990s, and still 0.43 when we constrain the coefficients γ to
their full-sample values. This fact suggests that the forecast power derives from changes in
the real rather than nominal term structure.

Table A8. Subsample analysis

Regression on all forward rates γ>f only
γ0 γ1 γ2 γ3 γ4 γ5 R2 γ>f R2

1964:01-2003:12 −3.2 −2.1 0.8 3.0 0.8 −2.1 0.35 1.00 0.35
1964:01-1979:08 −5.3 −1.3 1.4 2.5 −0.1 −1.7 0.31 0.73 0.26
1979:08-1982:10 −32.5 0.8 0.7 1.2 0.6 −0.8 0.78 0.77 0.24
1982:10-2003:12 −1.6 −1.8 1.0 2.0 1.2 −2.2 0.23 0.85 0.22
1964:01-1969:12 0.5 −1.4 0.3 2.1 0.4 −1.9 0.31 0.73 0.26
1970:01-1979:12 −9.6 −1.5 0.6 2.3 0.3 −0.6 0.22 0.65 0.16
1980:01-1989:12 −11.7 −2.4 1.8 2.6 1.0 −1.9 0.43 1.09 0.35
1990:01-1999:12 −13.9 −1.5 0.3 4.4 1.5 −2.5 0.71 1.57 0.43
2000:01-2003:12 −5.2 −1.1 0.2 2.2 0.3 0.02 0.65 0.60 0.34

Notes: Subsample analysis of average return-forecasting regressions. For each
subsample, the first set of columns present the regression

rxt+1 = γ>ft + εt+1.

The second set of columns report the coefficient estimate b and R2 from

rxt+1 = b
¡
γ>ft

¢
+ εt+1

using the γ parameter from the full sample regression. Sample: 1964-2003.

B.3 Real time forecasts and trading rule profits

How well can one forecast bond excess returns using real-time data? Of course, the conven-
tional rational-expectations answer is that investors have historical information, and have
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evolved rules of thumb that summarize far longer time series than our data set, so there is
no error in using full-sample forecasts. Still, it is an interesting robustness exercise to see
how well the forecast performs based only on data from 1964 up to the time the forecast
must be made.

Figure 8 compares real-time and full-sample forecasts. They are quite similar. Even
though the real-time regression starts the 1970s with only 6 years of data, it already captures
the pattern of bond expected returns.

The forecasts are similar, but are they similarly successful? Figures 9 and 10 compare
them with a simple calculation. We calculate “trading rule profits” as

rxt+1 ×Et(rxt+1) = rxt+1 ×
£
γ> (α0ft + α1ft−1 + a2ft−2)

¤
.

This rule uses the forecast Et(rxt+1) to recommend the size of a position which is subject to
the ex-post return rxt+1. In Figure 10, we cumulate the profits so that the different cases
can be more easily compared.8 For the Fama-Bliss regressions, we calculate the expected
excess return of each bond from its matched forward spread, and then we find the average
expected excess return across maturities in order to compute Et(rxt+1).

The full-sample vs. real-time trading rule profits in Figure 9 are quite similar. In both
Figure 9 and the cumulated profits of Figure 10 all of the trading rules produce surprisingly
few losses. The lines either rise or stay flat. The trading rules lie around waiting for
occasional opportunities. Most of the time, the forward curve is not really rising a lot, nor
tent shaped, so both rules see a small Et(rxt+1). The trading rules thus recommend small
positions, leading to small gains and losses. On infrequent occasions, the forward curve is
either rising or tent-shaped, so the trading rules recommend large positions Et(rxt+1), and
these positions seem to work out.

The real-time forecast looks quite good in Figure 9, but the cumulative difference amounts
to about half of the full-sample profits. However, the real-time trading rule does work, and
it even works better than even the full sample Fama-Bliss forecast. We conclude that the
overall pattern remains in real-time data. It does not seem to be the case that the forecast
power, or the improvement over the Fama-Bliss forecasts and related slope forecasts, requires
the use of ex-post data.

Of course, real “trading rules” should be based on arithmetic returns, and they should
follow an explicit portfolio maximization problem. They also must incorporate estimates
of the conditional variance of returns. Bond returns are heteroskedastic, so one needs to
embark on a similar-sized project to understand conditional second moments and relate them
to the conditional first moments we have investigated here.
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Figure 8: Full-sample and real-time forecasts of average (across maturity) excess bond re-
turns. In both cases, the forecast is made with the regression rxt+1 = γ>ft + ε̄t+1. The
real-time graph re-estimates the regression at each t from the beginning of the sample to t.
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Figure 9: “Trading rule” profits, using full-sampe and real-time estimates of the return-
forecasting factor.
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Figure 10: Cumulative profits from “trading rules” using full sample and real time informa-
tion. Each line plots the cumulative value of rxt+1 × Et(rxt+1). Et(rxt+1) are formed from
the full 1964-2003 sample or “real time” data from 1964-t as marked. The CP lines use
the forecast rxt+1 = γ>(α0ft + α1ft− 1

12
+ α2ft− 2

12
). The FB (Fama-Bliss) lines forecast each

excess return from the corresponding forward spread, and then average the forecasts across
maturities.
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C Calculations for the regressions

C.1 GMM estimates and tests

The unrestricted regression is
rxt+1 = βft + εt+1,

The moment conditions of the unrestricted model are

(C.3) gT (β) = E(εt+1 ⊗ ft) = 0.

The restricted model is β = bγ>, with the normalization b>14 = 4.

We focus on a 2-step OLS estimate of the restricted model — first estimate average (across
maturities) returns on f , then run each return on γ̂>f :

rxt+1 = γ>ft + ε̄t+1,(C.4)

rxt+1 = b
¡
γ̂>ft

¢
+ εt+1.(C.5)

The estimates satisfy 1>4 b = 4 automatically.

To provide standard errors for the two-step estimate in Table 1, we use the moments
corresponding to the two OLS regressions (C.4) and (C.5),

g̃T (b, γ) =

∙
E (ε̄t+1(b, γ)× ft)

E
£
εt+1(b, γ)× γ>ft

¤ ¸ = 0.
Since the estimate is exactly identified from these moments (a = I) Hansen’s (1982) Theorem
3.1 gives the standard error,

var

µ
γ̂

b̂

¶
=
1

T
d̃−1S̃d̃−1>

where

d̃ =
∂g̃T

∂ [γ> b>]
=

∂

∂ [γ> b>]

∙
E
£
ft
¡
rxt+1 − f>t γ

¢¤
E
£¡
rxt+1 − bγ>ft

¢ ¡
f>t γ

¢
)
¤ ¸

=

∙
−E

¡
ftf

>
t

¢
06×4

E(rxt+1f
>
t )− 2bγ>E

¡
ftf

>
t

¢
−
£
γ>E

¡
ftf

>
t

¢
γ
¤
I4

¸
.

Since the upper right block is zero, the upper left block of d−1 is E
¡
ftf

>
t

¢−1
. Therefore, the

variance of γ is not affected by the b estimate, and is equal to the usual GMM formula for a
regression standard error, var(γ̂) = E(ff>)−1S̃(1 : 6, 1 : 6)E(ff>)−1/T . The variance of b̂
is affected by the generated regressor γ, via the off diagonal term in d̃−1.This is an interesting
case in which the GMM standard errors that correct for the generated regressor are smaller
than OLS standard errors that ignore the fact. OLS has no way of knowing that

P
n bn = 1,

while the GMM standard errors know this fact. OLS standard errors thus find a common
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component to the b standard errors, while GMM knows that common movement in the b is
soaked up in the γ estimates.

We investigated a number of ways of computing S matrices. The regression is rxt+1 =
γ>ft + ε̄t+1. The Hansen-Hodrick (“HH”) statistics are based on

cov(γ̂) = E(ftf
>
t )
−1

"
kX

j=−k
E(ftf

>
t−j ε̄t+1ε̄t+1−j)

#
E(ftf

>
t )
−1.

The Newey-West (“NW”) statistics use

cov(γ̂) = E(ftf
>
t )
−1

"
kX

j=−k

k − |j|
k

E(ftf
>
t−j ε̄t+1ε̄t+1−j)

#
E(ftf

>
t )
−1.

The “Simplified HH” statistics assume E(ftf
>
t−j ε̄t+1ε̄t+1−j) = E(ftf

>
t−j)E(ε̄t+1ε̄t+1−j) and

E(ε̄t+1ε̄t+1−j) =
k−|j|
k

E(ε̄2t+1), hence

cov(γ̂) = E(ftf
>
t )
−1

"
kX

j=−k

k − |j|
k

E(ftf
>
t−j)

#
E(ftf

>
t )
−1E(ε̄2t+1).

“No overlap” statistics use

cov(γ̂) = E(ftf
>
t )
−1E(ftf

>
t ε̄

2
t+1)E(ftf

>
t )
−1

averaged over 12 initial months.

To test the (inefficient) two step estimate in Table 6, we apply Hansen’s Lemma 4.1 — the
counterpart to the JT test that handles inefficient as well as efficient estimates. To do this,
we must first express the restricted estimate as a GMM estimate based on the unrestricted
moment conditions (C.3). The two step OLS estimate of the restricted model sets to zero a
linear combination of the unrestricted moments:

(C.6) aTgT = 0,

where

aT =

⎡⎢⎢⎣
I6 I6 I6 I6
γ> 01×6 01×6 01×6
01×6 γ> 01×6 01×6
01×6 01×6 γ> 01×6

⎤⎥⎥⎦ = ∙ 1>4 ⊗ I6
I3 ⊗ γ> 03×6

¸
.

The first row of identity matrices in aT sums across return maturities to do the regression
of average returns on all forward rates. The last three rows sum across forward rates at a
given return maturity to do the regression of each return on γ>f . An additional row of aT of
the form

£
01×6 01×6 01×6 γ>

¤
to estimate the last element of b would be redundant — the

b4 regression is implied by the first three regressions. The estimate is the same whether one
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runs that regression or just estimates b4 = 1−b1−b2−b3. We follow the latter convention since
the GMM distribution theory is written for full rank amatrices. It is initially troubling to see
a parameter in the a matrix. Since we use the OLS γ estimate in the second stage regression,
however, we can interpret γ in aT as its OLS estimate, γ = ET (ff

>)−1ET (rx f). Then aT is
a random matrix that converges to a matrix a as it should in the GMM distribution theory.
(I.e. we do not choose the γ in aT to set aT (γ)gT (γ, b) = 0.)

We need the d matrix,

d ≡ ∂gT

∂
£
b> γ>

¤ .
Recalling b4 = 4− b1 − b2 − b3, the result is

d =

⎡⎢⎢⎣
⎡⎢⎢⎣
−1

−1
−1

1 1 1

⎤⎥⎥⎦⊗E(ff>)γ − b⊗E(ff>)

⎤⎥⎥⎦ .

Now, we can invoke Hansen’s Lemma 4.1, and write the covariance matrix of the moments
under the restricted estimate,

cov(gT ) =
1

T
(I − d(ad)−1a)S(I − d(ad)−1a)>.

The test statistic is
g>T cov(gT )

+gT˜χ
2
15.

There are 4 × 6 = 24 moments and 6(γ) + 3(b) parameters, so there are 15 degrees of
freedom. The cov(gT ) matrix is singular, so the + operator represents pseudoinversion.
One can use an eigenvalue decomposition for cov(gT ) and then retain only the largest 15
eigenvalues, i.e. write cov(gT ) = QΛQ> where Q is orthogonal and Λ is diagonal and then
cov(gT )

+ = QΛ+Q> where Λ+ inverts the 15 largest diagonal elements of Λ and sets the
remainder to zero. We use the matlab pinv command.

To conduct the corresponding Wald test in Table 6, we first find the GMM covariance
matrix of the unrestricted parameters. We form a vector of those parameters, vec(β), and
then

cov(vec(β)) =
1

T
d−1S (d)−1> ,

d =
∂gT

∂(vec(β)>)
= I4 ⊗E(ff>).

To construct standard errors and test statistics for the restricted model with lags in Table
5, we proceed similarly. The estimated parameters are α and γ. The moments gT set to zero
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the two regressions on which we iterate,

0 = E(γ>ft × εt+1)

0 = E(γ>ft− i
12
× εt+1)

...

0 = E
h
(α0f

(1)
t + α1f

(1)
t−1 + ..)× εt+1

i
0 = E

h
(α0f

(2)
t + α1f

(2)
t−1 + ..)× εt+1

i
...

The standard error formula is as usual cov(
£
α>γ>

¤
) = (d0S−1d)−1/T . The d matrix is

d =
dgT

d [α>γ>]
.

Note that the first set of moments do not involve α and the second set of moments do not
involve γ Thus, the d matrix is block-diagonal. This means that α standard errors are not
affected by γ estimation and vice versa. Therefore, we can use regular GMM standard errors
from each regression without modification.

C.2 Simulations for small-sample distributions

We simulate yields based on three different data-generating processes. Each of these processes
is designed to address a specific concern about the statistical properties of our test statistics.

As the generic bootstrap for Wald statistics, we use a vector autoregression with 12 lags
for the vector of yields

yt = A0 +A1yt−1/12 + . . . A12yt−1 + εt.

VARs based on fewer lags (such as one or two) are unable to replicate the one year horizon
forecastability of bond returns or of the short rate documented in Table 5.

Second to address unit root fears, we use a VAR with 12 lags that imposes a common
trend:

∆yt = A0 +B

⎛⎜⎜⎜⎜⎝
y
(1)
t−1/12 − y

(5)
t−1/12

y
(2)
t−1/12 − y

(5)
t−1/12

y
(3)
t−1/12 − y

(5)
t−1/12

y
(4)
t−1/12 − y

(5)
t−1/12

⎞⎟⎟⎟⎟⎠+
11X
i=1

Ai∆yt−i/12 + εt,

where ∆yt = yt − yt−1/12.

Third, we impose the expectations hypothesis by starting with an AR(12) for the short
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rate
y
(1)
t = a0 + a1y

(1)
t−1/12 + . . .+ a12y

(1)
t−1 + εt.

We then compute long yields as

y
(n)
t =

1

n
Et

Ã
nX
i=1

y
(n)
t+i−1

!
, n = 2, . . . , 5.

To compute the expected value in this last expression, we expand the state space to rewrite
the dynamics of the short rate as a vector autoregression with 1 lag. The 12-dimensional

vector xt =
h
y
(1)
t y

(1)
t−1/11 . . . y

(1)
t−11/12

i>
follows

xt = B0 +B1xt−1/12 + Σut

for

B0 =

µ
a0
0

¶
, B1 =

µ
a1 · · · a12
I11×11 011×1

¶
,Σ =

µ
1 01×11

011×1 011×11

¶
.

The vector e1 = [1 01×11] picks the first element in xt, which gives y
(1)
t = e1xt. Longer

yields can then be easily computed recursively as

y
(n)
t =

n− 1
n

y
(n−1)
t +

1

n
e1

ÃÃ
n−1X
i=0

Bi
1

!
B0 +Bn

1xt

!
, n = 2, . . . , 5,

with the understanding that Bi
1 for i = 0 is the 12× 12 identity matrix.

D Affine model

The main point of this section is to show that one can construct an affine term-structure
model that captures our return-forecasting regressions exactly. To that end, we start by
defining how an affine model works. Then we show how to construct an affine model — how
to pick market prices of risk — so that a VAR of our five bond prices pt+1 = μ+ φpt + vt+1
is an affine model. The issue here is how to make the model “self-consistent,” how to make
sure that the prices that come out of the model are the same as the prices that go in to the
model as “state variables.”

Return regressions carry exactly the same information as a price VAR of course, so in a
formal sense, finding market prices of risk to justify pt+1 = μ+φpt+ vt+1 as an affine model
is enough to make our point. However, it is interesting to connect the affine model directly to
return regressions, exhibiting the transformation from return regressions rxt+1 = a+βft+εt+1
to the price VAR and providing return-based intuition for the choice of the market prices of
risk. We show the market prices of risk generate a self-consistent model if and only if they
satisfy the one-period expected return equation (7). Our choice (8) is constructed to capture
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the one-period expected return equation, so we now know that it will form a self-consistent
affine model. There are many choices of market price of risk that satisfy the one-period
expected return equation. We show that the choice (8) minimizes variance of the discount
factor, and is thus analogous to the Hansen-Jagannathan (1991) discount factor and shares
its many appealing properties.

D.1 Model setup

First, we set up the exponential-normal class of affine models that we specialize to account
for return predictability. A vector of state variables follows

(D.7) Xt+1 = μ+ φXt + vt+1; vt+1 ∼ N (0, V ).

The discount factor is related to these state variables by

Mt+1 = exp

µ
−δ0 − δ>1 Xt −

1

2
λ>t V λt − λ>t vt+1

¶
(D.8)

λt = λ0 + λ1Xt.

These two assumptions are no more than a specification of the time-series process for the
nominal discount factor. We find log bond prices p

(n)
t by solving the equation

p
(n)
t = lnEt(Mt+1 · · ·Mt+n).

Proposition. The log prices are affine functions of the state variables

(D.9) p
(n)
t = An +B>

nXt.

The coefficients An and Bn can be computed recursively:

A0 = 0; B0 = 0

B>
n+1 = −δ>1 +B>

n φ
∗(D.10)

An+1 = −δ0 +An +B>
n μ

∗ +
1

2
B>
n V Bn(D.11)

where μ∗ and φ∗ are defined as

φ∗ ≡ φ− V λ1(D.12)

μ∗ ≡ μ− V λ0.(D.13)

Proof. We guess the form (D.9) and show that the coefficients must obey (D.10)-

(D.11). Of course, p
(0)
t = 0, so A0 = 0 and B0 = 0. For a one-period bond, we

have
p
(1)
t = lnEt(Mt+1) = −δ0 − δ>1 Xt,
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which satisfies the first (n = 1) version of (D.10)-(D.11). We can therefore write
the one-period yield as

y
(1)
t = δ0 + δ>1 Xt.

The price at time t of a n+ 1 period maturity bond satisfies

P n+1
t = Et

£
Mt+1P

n
t+1

¤
.

Thus, we must have

exp
¡
An+1 +B>

n+1Xt

¢
= Et

∙
exp

µ
−δ0 − δ>1 Xt −

1

2
λ>t V λt − λ>t vt+1 +An +B>

nXt+1

¶¸
= exp

µ
−δ0 − δ>1 Xt −

1

2
λ>t V λt +An

¶
Et

£
exp

¡
−λ>t vt+1 +B>

nXt+1

¢¤
.(D.14)

We can simplify the second term in (D.14):

Et

£
exp

¡
−λ>t vt+1 +B>

nXt+1

¢¤
= Et

£
exp

¡
−λ>t vt+1 +B>

n μ+B>
n φXt +B>

n vt+1
¢¤

= Et

£
exp

¡
(−λ>t +B>

n )vt+1 +B>
n μ+B>

n φXt

¢¤
= exp

¡
B>
n μ+B>

n φXt

¢
exp

1

2
(−λ>t +B>

n )V (−λt +Bn)

= exp
¡
B>
n μ+B>

n φXt

¢
exp

1

2
(λ>t V λt − 2B>

n V λt +B>
n V Bn).

Now, continuing from (D.14):

An+1 +B>
n+1Xt =

µ
−δ0 − δ>1 Xt −

1

2
λ>t V λt +An

¶
+
¡
B>
n μ+B>

n φXt

¢
+

+

µ
1

2
λ>t V λt −B>

n V λt +
1

2
B>
n V Bn

¶
= −δ0 − δ>1 Xt +An +B>

n μ+B>
n φXt −B>

n V λt +
1

2
B>
n V Bn

= −δ0 +An +B>
n μ−B>

n V λ0 +
1

2
B>
n V Bn − δ>1 Xt +B>

n φXt −B>
n V λ1Xt

=

µ
−δ0 +An +B>

n μ−B>
n V λ0 +

1

2
B>
n V Bn

¶
+
¡
−δ>1 +B>

n φ−B>
n V λ1

¢
Xt.

Matching coefficients, we obtain

B>
n+1 = −δ>1 +B>

n φ−B>
n V λ1

An+1 = −δ0 +An +B>
n μ−B>

n V λ0 +
1

2
B>
n V Bn.

Simplifying these expressions with (D.12) and (D.13), we obtain (D.10)-(D.11).
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Comments

Iterating (D.10)-(D.11), we can also express the coefficients An, Bn in p
(n)
t = An+B>

nXt

explicitly as

A0 = 0; B0 = 0

B>
n+1 = −δ>1 +B>

n φ
∗(D.15)

An+1 = −δ0 +An +B>
n μ

∗ +
1

2
B>
n V Bn(D.16)

B>
n = −δ>1

n−1X
j=0

φ∗j = −δ>1 (I − φ∗n) (I − φ∗)−1(D.17)

An = −nδ0 +
n−1X
j=0

µ
B>
j μ

∗ +
1

2
B>
j V Bj

¶
.(D.18)

Given prices, we can easily find formulas for yields, forward rates, etc. as linear functions
of the state variable Xt. Yields are just

y
(n)
t = −An

n
− B>

n

n
Xt.

Forward rates are

f
(n−1→n)
t = p

(n−1)
t − p

(n)
t

= (An−1 −An) + (B
>
n−1 −B>

n )Xt

= Af
n +Bf>

n Xt.

We can find Af and Bf from our previous formulas for A and B. From (D.17) and (D.18),

Bf>
n = δ>1 φ

∗n−1(D.19)

Af
n = δ0 −B>

n−1μ
∗ − 1

2
B>
n−1V Bn−1.(D.20)

In a risk neutral economy, λ0 = λ1 = 0. Thus, looking at (D.12) and (D.13), we would
have the same bond pricing formulas (D.10)-(D.11) in a risk-neutral economy with φ∗ = φ
and μ∗ = μ. Equations (D.17) and (D.18) are recognizable as risk-neutral formulas with
risk-neutral probabilities φ∗ and μ∗. The forward rate formula (D.19) is even simpler. It
says directly that the forward rate is equal to the expected value of the future spot rate and
a Jensen’s inequality term, under the risk-neutral measure (where φ∗ is the autocorrelation
matrix).

Note in (D.12) and (D.13) that λ0 contributes only to the difference between μ and μ
∗, and
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thus contributes only to the constant term An in bond prices and yields. A homoskedastic
discount factor can only give a constant risk premium. The matrix λ1 contributes only to
the difference between φ and φ∗, and only this parameter can affect the loading Bn of bond
prices on state variables to give a time-varying risk premium. Equivalently, a time-varying
risk premium needs conditional heteroskedasticity in the discount factor (D.8), and this is
provided by the λtvt+1 term of (D.8) and the variation in λt provided by λ1 6= 0.

D.2 One period returns

Here we derive the one-period expected return relation.

Proposition. One-period returns in the affine model follow

(D.21) Et [rxt+1] +
1

2
σ2t (rxt+1) = covt(rxt+1, v

>
t+1)λt.

This equation shows that the loadings λt which relate the discount factor to shocks in
(D.8) are also the “market prices of risk” that relate expected excess returns to the covariance
of returns with shocks. (This equation is similar to equation (7) in the paper. Here we use
shock to prices, while the paper uses shocks to ex-post returns, but the two shocks are
identical since rx

(n)
t+1 = p

(n−1)
t+1 − p

(n)
t + p

(1)
t .)

Proof. To show Equation (D.21), start with the pricing equation 1 = Et

h
Mt+1R

(n)
t+1

i
which holds for the gross return R

(n)
t+1 on any n-period bond. Then, we can write

1 = Et

h
Mt+1R

(n)
t+1

i
= Et

h
emt+1+r

(n)
t+1

i
0 = Et [mt+1] +Et

h
r
(n)
t+1

i
+
1

2
σ2t (mt+1) +

1

2
σ2t (r

(n)
t+1) + covt(r

(n)
t+1,mt+1)

with m = lnM and r(n) = lnR(n). Subtracting the same expression for the one-
year yield,

0 = Et [mt+1] + y
(1)
t +

1

2
σ2t (mt+1),

and with the 4× 1 vector rxt+1 = rt+1 − y
(1)
t , we have

Et [rxt+1] +
1

2
σ2t (rxt+1) = −covt(rxt+1,mt+1),

where σ2t (rxt+1) denotes the 4× 1 vector of variances. Now, we substitute in for
mt+1 from (D.8) to give (D.21).
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D.3 A ‘self-consistent’ model

Equation (D.9) shows that log bond prices are linear functions of the state variables Xt.
The next step is obviously to invert this relationship and infer the state variables from bond
prices, so that bond prices (or yields, forward rates, etc.) themselves become the state
variables. In this way, affine models end up expressing each bond price as a function of a few
“factors” (e.g. level, slope and curvature) that are themselves linear combinations of bond
prices.

Given this fact, it is tempting to start directly with bond prices as state variables, i.e. to
write Xt = pt, and specify the dynamics given by (9) as the dynamics of bond prices directly,

(D.22) pt+1 = μ+ φpt + vt+1.

(It is more convenient here to keep the constants separate and define the vectors p, f to
contain only the prices and forward rates, unlike the case in the paper in which p, f include
a one as the first element.)

It is not obvious, however, that one can do this. The model with log prices as state
variables may not be self-consistent; the prices that come out of the model may not be the
same as the prices we started with; their status initially is only that of “state variables.” The
bond prices that come out of the model are, by (D.11) and (D.10), functions of the market
prices of risk λ0, λ1 and risk-free rate specification δ0 δ1 as well as the dynamics μ and φ, so
in fact the model will not be self-consistent for generic specifications of {δ0, δ1, λ0, λ1}. But
there are choices of {δ0, δ1, λ0, λ1} that ensure self-consistency. We show by construction
that such choices exist; we characterize the choices, and along the way we show that any
market prices of risk that satisfy the one-period return equation will generate a self-consistent
model. In this sense, the market prices of risk λ which we construct to satisfy the return-
forecasting regressions do, when inserted in this exponential-Gaussian model, produce an
affine model consistent with the return regressions. Rather than just show that the choice
(8) works, we characterize the set of market prices that work and how the choice (8) is a
particular member of that set.

Definition The affine model is self-consistent if the state variables are the prices, that
is, if

An = 0, Bn = en

where en is a vector with a one in the nth place and zeros elsewhere.

Proposition. The affine model is self-consistent if and only if δ0 = 0, δ1 = −e1 and the
market prices of risk λ0, λ1 satisfy

QV λ1 = Qφ−R(D.23)

QV λ0 = Qμ+
1

2
Q diag(V )(D.24)
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Here,

Q ≡

⎡⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎦ ; R ≡

⎡⎢⎢⎣
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

⎤⎥⎥⎦ .
Q is a matrix that removes the last row, and R is a form of the first four rows of φ∗ that
generates the expectations hypothesis under the risk neutral measure, as we show below.

Proof. The proof is straightforward: we just look at the formulas for An and
Bn in (D.10) and (D.11) and tabulate what it takes to satisfy An = 0, Bn = en.
For the one-period yield we need B>

1 = e>1 and A1 = 0. Looking at (D.10) and
(D.11) we see that this requirement determines the choice of δ,

δ0 = 0; δ1 = −e1.

This restriction just says to pick δ0, δ1 so that the one-year bond price is the first
state variable. We can get there directly from

p
(1)
t = −δ0 − δ>1 pt.

For the n = 2, 3, 4, 5 period yield, the requirement B>
n = e>n in (D.10) and

An = 0 in (D.11) become

(D.25)
e>n = e>1 + e>n−1φ

∗

0 = e>nμ
∗ + 1

2
e>nV en.

In matrix notation, the self-consistency restriction Bn = en is satisfied if φ
∗ has

the form

(D.26) φ∗ =

⎡⎢⎢⎢⎢⎣
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1
a b c d e

⎤⎥⎥⎥⎥⎦ .
The last row is arbitrary. We only use 5 prices as state variables, so there is no
requirement that e>6 = e>1 + e>5 φ

∗.
The restriction An = 0 in equation (D.25) amounts to choosing constants in

the market prices of risk to offset 1/2 σ2 terms. The restriction is satisfied if

(D.27) μ∗n = −
1

2
e>nV en.

μ∗5 is similarly unrestricted.
Since only the first four rows of φ∗ and μ∗ are restricted, we can express the

necessary restrictions on λ0, λ1 in matrix form by using our Q matrix that deletes
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the fifth row,

Qφ∗ = R

Qμ∗ = −1
2
Q diag(V )

Finally, using the definitions of φ∗ and μ∗ in (D.12) and (D.13) we have

Q (φ− V λ1) = R

Q (μ− V λ0) = −
1

2
Q diag(V )

and hence we have (D.23) and (D.24).

Comments

The form of (D.26) and (D.27) have a nice intuition. The one-period pricing equation is,
from (D.21),
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Under risk neutral dynamics, λt = 0. Now, from the definition
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t ,

so we should see under risk neutral dynamics
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´
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The conditional mean in the first line is exactly the form of (D.26), and the constant in the
first line is exactly the form of (D.27). In sum, the proposition just says “if you’ve picked
market prices of risk so that the expectations hypothesis holds in the risk-neutral measure,
you have a self-consistent affine model.”

This logic does not constrain E∗t

³
p
(5)
t+1

´
since we do not observe p

(6)
t , and that is why the

last row of φ∗ is arbitrary. Intuitively, the 5 prices only define 4 excess returns and hence 4
market prices of risk.

From the definitions φ∗ = φ− V λ1; μ
∗ = μ− V λ0 we can just pick any φ∗ and μ∗ with

the required form (D.26) and (D.27), and then we can construct market prices of risk by

λ1 = V −1 (φ− φ∗)

λ0 = V −1(μ− μ∗)

This is our first proof that it is possible to choose market prices of risk to incorporate the
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return regressions, since return regressions amount to no more than a particular choice of
values for φ, μ.

Since the last rows are not identified, many choices of φ∗ and μ∗ will generate an affine
model, however. Equivalently, since we only observe four excess returns, we only can identify
four market prices of risk. By changing the arbitrary fifth rows of φ∗ and μ∗, we affect how
market prices of risk spread over the 5 shocks, or, equivalently, the market price of risk of the
fifth (orthogonalized) shock. The remaining question is how best to resolve the arbitrariness
— how best to assign the fifth rows of φ∗ and μ∗. At the same time, we want to produce a
choice that ties the market prices of risk more closely to the actual return regressions than
merely the statement that any return regression is equivalent to some φ, μ.

D.4 Connection to return regressions

Our next task is to connect the conditions (D.23) and (D.24) to return regressions rather
than to the parameters of the (equivalent) price VAR. One reason we need to do this is
to verify that the market prices of risk defined in terms of return regressions (8) satisfy
conditions (D.23) and (D.24) defined in terms of the price VAR.

Denote the return regression

(D.28) rxt+1 = α+ βft + εt+1;E(εt+1ε
0
t+1) = Σ.

Proposition. The parameters μ, φ, V of the affine model (D.22) and the parameters
α, β,Σ of the return forecasting regressions (D.28) are connected by

α = Qμ

β = (Qφ−R)F−1

Σ = QVQ>.

Here,

F ≡

⎡⎢⎢⎢⎢⎣
−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

⎤⎥⎥⎥⎥⎦
generates forward rates from prices, f

(n)
t = p

(n−1)
t − p

(n)
t so ft = Fpt.

Proof To connect return notation to the price VAR, we start with the definition
that connects returns and prices,

rx
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t + p

(1)
t ,
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or⎡⎢⎢⎢⎣
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or, in matrix notation,
rxt+1 = Qpt+1 −Rpt.

Thus, if we have an affine model pt = μ+φpt−1+vt it implies that we can forecast
excess returns from prices pt by

(D.29) rxt+1 = Qμ+ (Qφ−R)pt +Qvt+1.

Note that the return shocks εt+1 are exactly the first four price shocks Qvt+1.
The fitted value of this regression is of course exactly equivalent to a regression

with forward rates f on the right hand side, and our next task is to make that
transformation. From the definition f

(n)
t = p

(n−1)
t − p

(n)
t , we can connect forward

rates and prices with ft = Fpt, yielding

rxt+1 = Qμ+ (Qφ−R)F−1ft +Qvt+1.

Matching terms with (D.28) we obtain the representation of the proposition. We
also have the covariance matrix of returns with price shocks,

cov(rxt+1, v
>
t+1) = Qcov(vt+1, v

>
t+1) = QV.

At this point, it’s worth proving the logic stated in the text.

Proposition. If market prices of risk satisfy the one period return equation, the affine
model with log prices as state variables is self-consistent. In equations, if the λt satisfy

(D.30) Et
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then they also satisfy (D.23) and (D.24).

Proof. Using the form of the return regression

rxt+1 = Qμ+ (Qφ−R)pt +Qvt+1,

the return pricing equation (D.30) is

Qμ+ (Qφ−R)pt +
1

2
diag(QVQ>) = QV λt = QV (λ0 + λ1pt).

28



Thus, matching the constant and the terms multiplying pt, we obtain exactly the
conditions (D.23) and (D.24) again

Qμ+
1

2
diag(QVQ>) = QV λ0

Qφ−R = QV λ1.

More intuitively, but less explicitly, we can always write a price as its payoff
discounted by expected returns. For example,

p
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Obviously, if a model gets the right hand side correctly, it must get the left hand
side correctly.

D.5 Minimum variance discount factor

Now, there are many choices of the market price of risk that satisfy our conditions; (D.23)
and (D.24) only restrict the first four rows of V λ0 and V λ1. We find one particular choice
appealing, and it is the one given in the text as Equation (8). The choice is

λ1:4,t = Σ−1
µ
Et [rxt+1] +

1

2
σ2(rxt+1)

¶
(D.31)

= Σ−1
µ
α+ βft +

1

2
diag(Σ)

¶
;

λ5,t = 0

(Equation (8) in the paper expresses a 4× 1 vector market prices of risk, which multiply the
four return shocks. Here, we want a 5× 1 vector λ that can multiply the 5 price shocks in
the self-consistent affine model pt+1 = μ + φpt + vt+1. The return shocks are equal to the
first four price shocks, so (D.31) and (8) are equivalent. Also, in this appendix we are using
ft to denote a vector that does not include a constant, so α+ βft in (D.31) corresponds to
βft in (8.))
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Proposition. The choice (D.31) is, in terms of the parameters {μ, φ, V } of a price VAR,

λ0 = Q> ¡QVQ>¢−1µQμ+ 1
2
Qdiag (V )

¶
λ1 = Q> ¡QVQ>¢−1 (Qφ−R) .

The choices form a self-consistent affine model. (They are solutions to (D.23) and (D.24).)

Proof. As with Equation (8), Equation (D.31) satisfies the one period return
equation (D.30) by construction, so we know it forms a self-consistent affine
model. The rest is translating return notation to price notation. The matrix Q
removes a row from a matrix with 5 rows, so the matrix

Q> ≡

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎦
adds a row of zeros to a matrix with 4 rows. Therefore, we can write (D.31) as

λt = Q>Σ−1
µ
Et [rxt+1] +

1

2
σ2(rxt+1)

¶
.

Substituting the regression in terms of the price-VAR, (D.29), and with Σ =
QVQ>,

λt = Q> ¡QVQ>¢−1µQμ+ (Qφ−R)pt +
1

2
diag

¡
QVQ>¢¶ .

Matching constant and price terms, and with diag
¡
QVQ>¢ = Qdiag(V )

λ0 = Q> ¡QVQ>¢−1µQμ+ 1
2
Qdiag (V )

¶
λ1 = Q> ¡QVQ>¢−1 (Qφ−R) .

These are easy solutions to (D.23) and (D.24); when we take QV λi, the terms in
front of the final parentheses disappear.

This choice of market price of risk is particularly nice because it is the “minimal” choice.
Justifying asset pricing phenomena with large market prices of risk is always suspicious, so
why not pick the smallest market prices of risk that will do the job? We follow Hansen
and Jagannathan (1991) and define “smallest” in terms of variance. In levels, these market
prices of risk give the smallest Sharpe ratios. Our choice is the discount factor with smallest
conditional variance that can do the job.
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Proposition. The market prices of risk (D.31) are the “smallest” market prices of risk
possible, in the sense that they produce the discount factor with smallest variance.

Proof. For any lognormal M , we have

σ2t (M) = e2Et(m)+2σ
2
t (m) − e2Et(m)+σ

2
t (m)

= e2Et(m)+σ
2
t (m)

³
eσ

2
t (m) − 1

´
.

Thus, given the form (D.8) of the discount factor, we have

σ2t (M) = e−2(δ0+δ
>
1 Xt)

³
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>
t V λt − 1

´
.

Our objective is min σ2t (m). We will take the one period pricing equation as the
constraint, knowing that it implies a self-consistent model,
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where C is a 4× 5 matrix. Thus, the problem is

min
λt

1

2
λ>t V λt s.t. α+ βft +

1

2
Qdiag(V ) = Cλt.

The first-order condition to this problem is

V λt = C>ξt,

where ξt is a 4× 1 vector of Lagrange multipliers. We can now solve

λt = V −1C>ξt.

Plugging this solution back into the constraint gives

α+ βft +
1

2
Qdiag(V ) = CV −1C>ξt,

which we can solve for ξt, so that we get

λt = V −1C> £CV −1C>¤−1 ∙α+ βft +
1

2
Qdiag(V )

¸
.

With C = QV , we have the same market prices of risk we derived above,

λt = V −1V Q> £QV V −1V >Q>¤−1 ∙α+ βft +
1

2
Qdiag(V )

¸
= Q> £QVQ>¤−1 ∙α+ βft +

1

2
Qdiag(V )

¸
.
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