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Dynamic Portfolio Selection by Augmenting
the Asset Space

MICHAEL W. BRANDT and PEDRO SANTA-CLARA∗

ABSTRACT

We present a novel approach to dynamic portfolio selection that is as easy to im-
plement as the static Markowitz paradigm. We expand the set of assets to include
mechanically managed portfolios and optimize statically in this extended asset space.
We consider “conditional” portfolios, which invest in each asset an amount propor-
tional to conditioning variables, and “timing” portfolios, which invest in each asset
for a single period and in the risk-free asset for all other periods. The static choice
of these managed portfolios represents a dynamic strategy that closely approximates
the optimal dynamic strategy for horizons up to 5 years.

SEVERAL STUDIES POINT OUT THE IMPORTANCE of dynamic trading strategies to exploit
the predictability of the first and second moments of asset returns and hedge
changes in the investment opportunity set. However, computing these optimal
dynamic investment strategies has proven to be a rather formidable problem be-
cause closed-form solutions are only available for a few cases. While researchers
have explored a variety of numerical solution methods, including solving par-
tial differential equations, discretizing the state-space, and using Monte Carlo
simulation, these techniques are out of reach for most practitioners and thus
they remain largely in the ivory tower. The workhorse of portfolio optimization
in industry remains the static Markowitz approach.

Our paper presents a novel approach to dynamic portfolio selection that is
no more difficult to implement than the static Markowitz model. The idea is
to expand the asset space to include simple (mechanically) managed portfo-
lios and compute the optimal static portfolio within this extended asset space.
The intuition is that a static choice of managed portfolios is equivalent to a
dynamic strategy. One can therefore approximate the optimal dynamic strat-
egy by a fixed combination of mechanically managed portfolios. We consider
managed portfolios of two types, namely “conditional” and “timing” portfolios.
Conditional managed portfolios are constructed along the lines of Hansen and
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Richard (1987).1 Specifically, for each variable that affects the distribution of
returns and for each basis asset, we consider a portfolio that invests in the basis
asset an amount that is proportional to the level of the conditioning variable.
Timing portfolios invest in each asset for a single period and in the risk-free
rate for all other periods. Timing portfolios mimic strategies that buy and sell
the asset over time. For example, holding a constant amount of all the timing
portfolios that are related to a single asset approximates a strategy that holds a
constant proportion of wealth in the asset. In contrast, hedging demands induce
the investor to hold different amounts of the timing portfolios across time.

Given an expanded asset space with managed portfolios, we can use the
Markowitz solution to find the optimal strategy for a mean–variance investor.
The optimal strategy is a combination of managed portfolios. However, it is
trivial to recover the corresponding investment in the basis assets at each point
in time given the values of the conditioning variables. The weight invested
in each basis asset at each point in time is a simple linear function of the
state variables. Thus, our approach is equivalent to parameterizing the portfolio
policy as a function of the state variables and then maximizing the investor’s
utility by choosing optimally the coefficients of this function.

The advantage of framing the dynamic portfolio problem in a static context
is that all the refinements developed over the years for the Markowitz model
become available. These include the use of portfolio constraints, shrinkage esti-
mation, and the combination of an investor’s prior beliefs with the information
contained in the history of returns.

In general, our approach relies on sample moments of the long-horizon re-
turns of the expanded set of assets. However, given the finite size of the sample
of returns, we cannot address problems with very long horizon by simply ex-
panding the asset space. For example, the Ibbotson database covers roughly
80 years of data, which corresponds to only eight nonoverlapping 10-year re-
turns and renders our approach subject to small-sample problems for problems
with such long horizons. For these cases, it is better to use a model of the dy-
namics of returns and state variables. We show that if the log returns on the
basis assets and the log state variables follow a vector auto-regression (VAR)
with normally distributed innovations, as is typically assumed in the line of re-
search initiated by Campbell and Viceira (1999),2 the long-horizon moments of
returns can all be expressed in terms of the parameters of the VAR. In this spe-
cial but popular case, we use our approach to obtain approximate closed-form
solutions for the finite-horizon dynamic portfolio choice that complements the
approximate closed-form solutions for the infinite-horizon case with interme-
diate consumption derived by Campbell and Viceira (1999).

Our approach is similar in spirit to that of Cox and Huang (1989) and its
empirical implementation by Aı̈t-Sahalia and Brandt (2005). In these papers,
the dynamic portfolio problem is solved in two steps. The investor first chooses

1 Hansen and Richard (1987) introduced this idea to develop tests of conditional asset pricing
models. Bansal and Harvey (1996) use conditional portfolios in performance evaluation.

2 See also the survey by Campbell and Viceira (2002).
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the optimal portfolio of Arrow–Debreu securities and then figures out how to
replicate this portfolio by dynamically trading the basis assets or derivatives
on the basis assets. In contrast, in this paper, we solve the portfolio problem
in one step as the optimal choice across simple dynamic trading strategies.
Note also that while the Cox–Huang approach requires that financial markets
be complete, for only then all Arrow–Debreu securities can be replicated, we
do not need to assume market completeness since the investor only chooses
among feasible strategies. On the other hand, Cox and Huang (1989) provide
the exact solution to the portfolio problem, whereas our approach offers only
an approximation.

Our paper also relates to Ferson and Siegel (2001). Assuming that the condi-
tional mean vector and covariance matrix of asset returns are known functions
of the state variables, they derive the optimal portfolio weights by maximizing
a mean–variance utility function (in an unconditional sense similar to ours).
They then show that the resulting portfolio weights are also functions of the
state variables since the weights depend on the conditional means, variances,
and covariances of asset returns. In contrast, we model the portfolio weights
directly as functions of the state variables, and we find the coefficients of these
functions that maximize the investor’s utility. Our portfolio weights implicitly
take into account the impact of the state variables on the means, variances,
and covariances of asset returns since all of these moments affect the portfo-
lio’s expected return and risk, and in turn the investor’s expected utility. Thus,
our method can be interpreted as an approximation of the solution offered
by Ferson and Siegel. For instance, by postulating that the optimal portfolio
weights are linear in the state variables, we implicitly constrain the forms of
the mean vector and the covariance matrix of returns as functions of the state
variables.

However, the two methods are quite different when applied in practice. To use
Ferson and Siegel’s approach, we need to estimate conditional means, variances,
and covariances of returns as functions of the state variables. While one can
easily estimate conditional mean functions by regressing returns on the state
variables, it is notoriously difficult to estimate a conditional covariance matrix
as a function of state variables in a manner that guarantees positive semidef-
initeness at all times. In contrast, estimating the portfolio weight function in
our approach does not require imposing any sort of nonlinear constraints. Fur-
thermore, our approach has the advantage of being much more parsimonious.
Suppose we are interested in forming optimal portfolios of N assets. With Ferson
and Siegel’s approach, we have to estimate N functions of the state variables for
the expected return vector and N(N + 1)/2 functions for the covariance matrix.
With our approach, we only need to estimate N functions for the optimal port-
folio weights. The gains in computation and estimation precision are evident.

A few words of caution are in order. Given that our approximation to the
multiperiod optimization problem ignores compounding of returns, our method
cannot address portfolio choice problems with very long horizons. The loss in
certainly equivalent from using our approximation as opposed to an exact so-
lution can exceed 10% at a 10-year horizon and 25% at a 20-year horizon.
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Furthermore, our approach cannot handle endogenous state variables obtained
from an investor’s previous decisions. Endogenous state variables are impor-
tant in problems with transaction costs, taxes, and other frictions. Finally, our
method is only applicable to preferences over final wealth. It cannot be applied
to problems with intermediate consumption.

The paper proceeds as follows. First, we describe our approach in Sections I.A
and I.B. We then illustrate the mechanics of our approach through a simple
example in Section I.C, and we examine its accuracy in Section I.D. Section II
deals with the special case in which the log returns and log state variables follow
a Gaussian VAR, and Section III discusses how several refinements of the static
Markowitz approach can be directly applied to our approach. We illustrate our
approach through an empirical application in Section IV, and in Section V we
conclude.

I. The Method

We solve a conditional portfolio choice problem with parametrized portfo-
lio weights of the form xt = θzt, where zt denotes a vector of state variables
and θ is a matrix of coefficients. This conditional portfolio choice problem is
mathematically equivalent to solving an unconditional problem within an aug-
mented asset space that includes naively managed zero-investment portfolios
with excess returns of the form zt times the excess return of each basis asset.
In subsection A we establish this idea in the context of a single-period problem,
and in subsection B we extend the approach to the multiperiod case. We then
illustrate both cases in a simple example (subsection C), and finally we examine
the accuracy of the solutions in a numerical experiment (subsection D).

A. Single-Period Problem

We consider the problem of an investor who maximizes the conditional ex-
pected value of a quadratic utility function over next period’s wealth, Wt+1

max Et

[
Wt+1 − bt

2
W 2

t+1

]
, (1)

where bt is positive and sufficiently small to ensure that the marginal utility of
wealth remains positive. Let Rf

t be the gross risk-free rate and rp
t+1 = Rp

t+1 − Rf
t

be the excess return on the investor’s portfolio from t to t + 1. (Throughout the
paper we use capital letters to denote gross returns and lower-case letters to
denote excess returns. We date all variables with a subscript that corresponds
to the time at which the variable is known. For example, returns of risky assets
from time t to time t + 1 are denoted by Rt+1. The risk-free rate for the same
period is denoted by Rf

t , since it is known at the beginning of the return period.)
Given this notation, we have

Wt+1 = Wt
(
R f

t + r p
t+1

)
. (2)
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Substituting equation (2) into equation (1) and simplifying, we obtain

max Et

[
cte + r p

t+1 − bt Wt

2
(
1 − bt Wt R f

t
)(

r p
t+1

)2

]
, (3)

where cte contains terms that are constant given the information available at
time t. For simplicity, we rewrite the problem as

max Et

[
r p

t+1 − γ

2
(
r p

t+1

)2
]

, (4)

ignoring the constant term and letting γ represent a positive constant.
Denote the vector of portfolio weights on the risky assets at time t by xt. The

above optimization problem then becomes

max
xt

Et

[
x�

t rt+1 − γ

2
x�

t rt+1r�
t+1xt

]
, (5)

where rt+1 = Rt+1 − Rf
t is the vector of excess returns on the N risky assets. By

formulating the problem in terms of excess returns, we are implicitly assuming
that the remainder of the portfolio’s value is invested in the risk-free asset with
return Rf

t .
When the returns are independent and identically distributed (i.i.d.) and

the portfolio weights are constant over time, that is xt = x, we can replace the
conditional expectation with an unconditional expectation and solve for the
weights according to

x = 1
γ

E
[
rt+1r�

t+1

]−1E[rt+1]. (6)

This is the well-known Markowitz solution, which can be implemented in prac-
tice by replacing the population moments by sample averages

x = 1
γ

[
T−1∑
t=1

rt+1r�
t+1

]−1 [
T−1∑
t=1

rt+1

]
. (7)

(Note that the 1/T terms in the sample averages cancel.)
Consider now the more realistic case of returns that are not i.i.d. and assume

that the optimal portfolio policies are linear in a vector of K state variables (the
first of which we will generally take to be a constant). Then

xt = θzt , (8)

where θ is an N × K matrix. Our problem is now

max
θ

Et

[
(θzt)�rt+1 − γ

2
(θzt)�rt+1r�

t+1(θzt)
]
. (9)

From linear algebra we can use the result that

(θzt)�rt+1 = z�
t θ�rt+1 = vec(θ )�(zt ⊗ rt+1), (10)
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where vec(θ ) piles up the columns of matrix θ into a vector and ⊗ is the
Kronecker product of two matrices, and can write

x̃ = vec(θ ) (11)

r̃t+1 = zt ⊗ rt+1. (12)

Our problem can now be written as

max
x̃

Et

[
x̃�r̃t+1 − γ

2
x̃�r̃t+1r̃�

t+1 x̃
]
. (13)

Since the same x̃ maximizes the conditional expected utility at all dates t, it
also maximizes the unconditional expected utility

max
x̃

E
[
x̃�r̃t+1 − γ

2
x̃�r̃t+1r̃�

t+1 x̃
]

, (14)

which corresponds to the problem of finding the unconditional portfolio weights
x̃ for the expanded set of (N × K) assets with returns r̃t+1. The expanded set
of assets can be interpreted as managed portfolios, each of which invests in a
single basis asset an amount that is proportional to the value of one of the state
variables. We term these “conditional portfolios.”

It follows that the optimal x̃ is

x̃ = 1
γ

E
[
r̃t+1r̃�

t+1

]−1E[r̃t+1]

= 1
γ

E
[(

ztz�
t

) ⊗ (
rt+1r�

t+1

)]−1E[zt ⊗ rt+1], (15)

which we can again implement in practice by replacing the population moments
by sample averages

x̃ = 1
γ

[
T∑

t=0

(
ztz�

t

) ⊗ (
rt+1r�

t+1

)]−1 [
T∑

t=0

zt ⊗ rt+1

]
. (16)

From this solution we can trivially recover the weight invested in each of the
basis assets by adding the corresponding products of elements of x̃ and zt.

Note that the solution (16) depends only on the data and hence does not re-
quire any assumptions about the distribution of returns apart from stationarity.
In particular, the solution does not require any assumptions about how the dis-
tribution of returns depends on the state variables. Thus, the state variables
can predict time variation in the first-, second-, and, if we consider more general
utility functions, even higher-order moments of returns. As Brandt (1999) and
Aı̈t-Sahalia and Brandt (2001) emphasize, the advantage of focusing directly
on the portfolio weights is that we bypass estimation of the conditional return
distribution. This intermediate estimation step typically involves ad hoc dis-
tributional assumptions and inevitably misspecified models for the conditional
moments of returns. In contrast, estimating the conditional portfolio weights in
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a single step is robust to misspecification of the conditional return distribution.
It can also result in more precise estimates if the dependence of the optimal
portfolio weights on the state variables is less noisy than the dependence of the
return moments on the state variables.

At this point, it is instructive to compare our approach to that of Ferson
and Siegel (2001). They assume that the conditional expected returns and the
conditional variances and covariances of asset returns are known functions of
the state variables, that is,

rt+1 = μ(zt) + εt+1, (17)

where the conditional covariance matrix of εt+1 is �(zt). Ferson and Siegel then
derive the mean–variance optimal portfolio weights as a function of the state
variables

x(zt) = π
(
μ(zt) − R f ι

)�
�(zt), (18)

where

�(zt) = [(
μ(zt) − R f ι

)(
μ(zt) − R f ι

)� + �(zt)
]−1, (19)

ι is a vector of ones, and π is a constant.
Our approach of modeling the portfolio weights as a function of the state

variables can be seen as an approximation of the solution provided by Ferson
and Siegel. For instance, postulating that the portfolio weights are linear in the
state variables,

x(zt) = θzt , (20)

implicitly constrains the functional forms of μ(z) and �(z) in equations (18)
and (19). Ferson and Siegel show that when the returns are homoskedastic,
the optimal portfolio weights are approximately linear in the expected returns
for an extended range of the state variables around their unconditional means.
Therefore, if the expected returns are linear in the state variables, the portfolio
weights will also be linear in the state variables. Of course, homoskedastic re-
turns with linear means is only one of many return models that deliver approx-
imately linear portfolio weights. Also, our approach can easily accommodate
nonlinear portfolio weights by simply including nonlinear transformations of
the state variables in the portfolio weight functions.

In practice, applying Ferson and Siegel’s approach raises a number of issues.
While one can easily estimate the conditional mean functions μ(zt) by regressing
excess returns rt+1 on the state variables zt, it is notoriously difficult to estimate
a conditional covariance matrix �(zt) as a function of the state variables in a
manner that guarantees positive semidefiniteness at all times. Estimating the
portfolio weight function in our approach does not require imposing any sort of
nonlinear constraints. Furthermore, our approach has the advantage of being
much more parsimonious. Suppose that we are interested in forming optimal
portfolios of N assets. With Ferson and Siegel’s approach, we have to estimate
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N functions of the state variables for the expected return vector and N(N + 1)/2
functions for the covariance matrix, whereas with our approach, we only need to
estimate N functions for the optimal portfolio weights. The gains in computation
and estimation precision are evident.

Since we express the portfolio problem in an estimation context, we can
use standard sampling theory to compute standard errors for the portfolio
weights and then test hypotheses about them. Specifically, following Britten-
Jones (1999), we can interpret the solution (16) as being proportional (with
constant of proportionality 1/γ ) to the coefficients of a standard ordinary least
squares (OLS) regression of a vector of ones on the excess returns r̃t+1. This
allows us to compute standard errors for x̃ from the standard errors of the re-
gression coefficients. These standard errors can be used to test, for example,
whether some state variable is a significant determinant of the portfolio policy.
Using our notation, the covariance matrix of the vector x̃ is

1
γ 2

1
T − N × K

(ιT − r̃ x̃)�(ι − r̃ x̃)(r̃�r̃)−1, (21)

where ιT denotes a T × 1 vector of ones and r̃ is a T × K matrix with the time
series of returns of the K managed portfolios.

As we already mentioned, the assumption that the optimal portfolio weights
are linear functions of the state variables is innocuous because zt can include
nonlinear transformations of a set of more basic state variables yt. This means
that the linear portfolio weights can be interpreted as a more general portfo-
lio policy function xt = g (yt) for any g (·) that can be spanned by a polynomial
expansion in the more basic state variables yt. In other words, in principle our
approach can accommodate very general dependence of the optimal portfolio
weights on the state variables.

In practice, we need to choose a finite set of state variables and possible
nonlinear transformations of these state variables to include in the portfolio
policy. From a statistical perspective, variable selection for modeling portfolio
weights is no different from variable selection for modeling returns. Variables
can be chosen on the basis of individual t-tests and joint F-tests computed with
the covariance matrix of the portfolio weights in equation (21), or on the basis
of out-of-sample performance. From an economic perspective, however, there
are distinct advantages to focusing directly on the optimal portfolio weights.
As Aı̈t-Sahalia and Brandt (2001) demonstrate, it is more natural in an asset
allocation framework to choose variables that predict optimal portfolio weights
than it is to choose variables that predict return moments. In particular, a
variable may be a statistically important predictor of both means and variances
but be useless for determining optimal portfolio weights because the variation
in the moments offset each other (e.g., the corresponding conditional Sharpe
ratio is small).

Finally, we can extend our approach to allow some or all of the state variables
to be asset-specific. In a companion paper, Brandt, Santa-Clara, and Valkanov
(2005), we study optimal stock portfolios by parameterizing the weight invested
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in each stock as a function of the company’s characteristics, including its book-
to-market ratio, market capitalization, and return over the past year. Impor-
tantly, the parameters of the weight function are constrained to be the same
for all stocks, which makes the problem highly tractable and computationally
efficient. The resulting optimal portfolios (of this very large set of assets) do not
suffer from exploding weights (as mean–variance efficient portfolios often do),
and they deliver outstanding performance both in and out of sample.

B. Multiperiod Problem

The idea of augmenting the asset space with naively managed portfolios ex-
tends to the multiperiod case. Consider an investor who maximizes the two-
period mean-variance objective

max Et

[
r p

t→t+2 − γ

2
(
r p

t→t+2

)2
]

, (22)

where r p
t→t+2 denotes the excess return of the two-period investment strategy

r p
t→t+2 = (

R f
t + x�

t rt+1
)(

R f
t+1 + x�

t+1rt+2
) − R f

t R f
t+1

= x�
t

(
R f

t+1rt+1
) + x�

t+1

(
R f

t rt+2
) + (

x�
t rt+1

)(
x�

t+1rt+2
)
. (23)

The first line of this expression shows why we refer to r p
t→t+2 as a two-period

excess return. The investor borrows a dollar at date t and allocates it to the
risky and risk-free assets according to the first-period portfolio weights xt. After
the first period, at date t + 1, the one-dollar investment results in (Rf

t + x�
t rt+1)

dollars, which the investor then allocates again to the risky and risk-free assets
according to the second-period portfolio weights xt+1. Finally, at date t + 2, the
investor has (Rf

t + x�
t rt+1)(Rf

t+1 + x�
t+1rt+2) dollars but must pay Rf

t R
f
t+1 dollars

for the principal and interest of the one-dollar loan. The remainder is the two-
period excess return.

The second line of equation (23) decomposes the two-period excess return into
three terms. The first two terms have a natural interpretation as the excess
return of investing in the risk-free rate in the first (second) period and in the
risky asset in the second (first) period. To see that x�

t (Rf
t+1rt+1) is a two-period

excess return from investing in risky assets in the first period and the risk-
free asset in the second period, just follow the argument above letting xt+1 = 0.
Investing the first-period proceeds of (Rf

t + x�
t rt+1) in the risk-free asset in the

second period yields (Rf
t + x�

t rt+1)Rf
t+1. After paying back Rf

t R
f
t+1, the investor is

left with an excess return of x�
t (Rf

t rt+1). Note that the portfolio weights on these
two intertemporal portfolios are the same as the weights on the risky asset in
the first and second periods, respectively. The third term in this expression
captures the effect of compounding.

Comparing the first two terms to the third, we see that the latter is two
orders of magnitude smaller than the former. The return (x�

t rt+1)(x�
t+1rt+2) is a

product of two single-period excess returns, which means that its magnitude
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is typically of the order of 1/100th of a percent per year. The returns on the
first two portfolios, in contrast, are products of a gross return (Rf

t or Rf
t+1) and

an excess return (rt+1 or rt+2), so their magnitudes are likely to be percent per
year.

Given that the compounding term is orders of magnitude smaller than the
two intertemporal portfolios, we ignore it for now. (We discuss the effect of
ignoring the compounding term below.) The two-period portfolio choice is then
simply a choice between two intertemporal portfolios, one that holds the risky
asset in the first period only and the other that holds the risky asset in the
second period only. We refer to these two portfolios as “timing portfolios.” We
can then solve the dynamic problem as a simple static choice between these two
managed portfolios. In particular, for the two-period case, the sample analogue
of the optimal portfolio weights is given by

x̃ = 1
γ

[
T−2∑
t=1

r̃t→t+2r̃�
t→t+2

]−1 [
T−2∑
t=1

r̃t→t+2

]
, (24)

where r̃t→t+2 = [R f
t+1rt+1, R f

t rt+2]. The first set of elements of x̃ (corresponding
to the returns R f

t+1rt+1) represents the fraction of wealth invested in the risky
assets in the first period, and the second set of elements (corresponding to
Rf

t rt+2) represents the fraction of wealth invested in the risky assets in the
second period.

In a general H-period problem, we proceed in exactly the same fashion. We
construct a set of timing portfolios

r̃t→t+H =

⎧⎪⎪⎨⎪⎪⎩
H−1∏
i=0
i �= j

R f
t+irt+ j+1

⎫⎪⎪⎬⎪⎪⎭
H−1

j=0

, (25)

where each term represents a portfolio that invests in risky assets in period t + j
and in the risk-free rate in all other periods t + i, with i �= j. Again, the sample
analogue of the optimal portfolio weights is then given by the static solution

x̃ = 1
γ

[
T−H∑
t=1

r̃t→t+Hr̃�
t→t+H

]−1 [
T−H∑
t=1

r̃t→t+H

]
. (26)

It is important to realize that, in contrast to a long-horizon buy-and-hold prob-
lem, the random components of the timing portfolios are nonoverlapping. We
therefore avoid the usual statistical problems associated with overlapping long-
horizon returns. Note, however, that as the length of the horizon H increases,
we lose observations for computing the mean and covariance matrix of r̃t→t+H ,
which may compromise the statistical precision of the solution.

We can naturally combine the ideas of conditional portfolios and timing port-
folios by replacing the risky returns rt+j+1 in equation (25) with the conditional
portfolio returns zt+j ⊗ rt+j+1. The resulting optimal portfolio weights x̃ from
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equation (26) then provide the optimal allocations to the conditional portfolios
at each time t + j.

The obvious appeal of our approach is its simplicity. Of course, this simplicity
comes with drawbacks. First, by ignoring the compounding terms, our approach
no longer provides the exact solution to the multiperiod problem. Writing out
the return to an H-period dynamic portfolio strategy analogous to the two-
period case in equation (23) shows that the multiperiod portfolio returns are
only spanned when we include the compounding terms in the static portfolio
problem. Unfortunately, the presence of the compounding terms imposes a set
of nonlinear constraints on the static portfolio weights. The portfolio weights on
the compounding terms are constrained to be products of the portfolio weights
on the timing portfolios. Due to the nonlinearity of these constraints, solving
the static constrained problem with compounding terms for a large number
of assets and/or a large number of rebalancing periods is not much simpler
than solving the corresponding dynamic problem using numerical optimiza-
tion techniques. Our suggestion is to ignore the compounding terms on the
grounds that they are orders of magnitude smaller than the timing portfolio
returns. However, in ignoring the compounding terms, our solution is at best
a good approximation of the solution to the multiperiod problem. The quality
of the approximation is naturally specific to each application. Intuitively, it de-
pends on the growth rate of wealth per period and on the number of periods
considered.

To better understand this issue consider the exact H-period portfolio excess
return

r p
t→t+H =

H−1∑
j=0

x�
t+ j

H−1∏
i=0
i �= j

R f
t+irt+ j+1

+
H−1∑
j=0

H−1∑
k=0
k �= j

x�
t+ j

H−1∏
i=0
i �= j

R f
t+irt+ j+1x�

t+k

H−1∏
i=0
i �=k

R f
t+irt+k+1 . . .

+
H−1∏
j=0

x�
t+ j rt+ j+1.

(27)

Our approximation uses the first H terms in this expression (in the first line
of the equation) and disregards 2H − H − 1 terms of lower magnitude. It is im-
portant to note that the number of terms we disregard grows exponentially
with the number of rebalancing periods H and the importance of each of these
terms depends on the magnitude of the one-period returns. Thus, the quality of
the approximation is likely to deteriorate both with the horizon of the portfolio
problem and with the rebalancing frequency. In subsection D we use a simula-
tion experiment to provide some evidence on the quality of the approximation
for different horizons and rebalancing frequencies.
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The second drawback of our approach is that it can be quite data intensive
for problems with very long horizons. For example, suppose we want to solve
a 10-year portfolio choice problem with quarterly rebalancing using a 60-year
post-war sample of quarterly returns and state variable realizations. Since each
timing portfolio involves a 10-year return, we would only have six independent
observations to compute the moments of the timing portfolio returns and hence
the optimal portfolio weights. The obvious way to overcome this data issue is to
impose a statistical model for the returns and state variables that allows us
to compute the long-horizon moments analytically (or by simulation) from the
parameters of the statistical model. Specifically, if the log returns on the basis
assets and the log state variables follow a VAR with normally distributed inno-
vations, the long-horizon moments can be expressed in terms of the parameters
of the VAR. This use of a statistical model allows us to solve dynamic portfolio
choice problems with arbitrarily long horizons using only a finite data sample.
We elaborate on this idea in Section II.

C. Illustrative Example

To illustrate more concretely the mechanics of our approach, consider a time
series of only six observations (for simplicity) of excess returns for two risky
assets, namely, a stock denoted by s and a bond denoted by b⎡⎢⎢⎢⎢⎣

rs
1 rb

1

rs
2 rb

2

· · · · · ·
rs

6 rb
6

⎤⎥⎥⎥⎥⎦ . (28)

The optimal static portfolio in equation (7) directly gives us the weight xs in-
vested in the stock and the weight xb invested in the bond (with the remainder
invested in the risk-free asset). The solution takes into account the sample co-
variance matrix of asset returns and the vector of sample mean excess returns.

Suppose now that there is one conditioning variable, such as the dividend
yield or the spread between long and short Treasury yields, which affects
the conditional distribution of returns. We observe a time series of this state
variable ⎡⎢⎢⎢⎢⎣

z0

z1

· · ·
z5

⎤⎥⎥⎥⎥⎦ , (29)

where the dating reflects the fact that z is known at the beginning of each
return period. We take the information in the conditioning variable into account
by estimating a portfolio policy that depends on it. To do this, we expand the
matrix of returns (28) in the following manner:
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⎡⎢⎢⎢⎢⎣
rs

1 rb
1 z0rs

1 z0rb
1

rs
2 rb

2 z1rs
2 z1rb

2

· · · · · · · · · · · ·
rs

6 rb
6 z5rs

6 z5rb
6

⎤⎥⎥⎥⎥⎦ , (30)

and we then compute the optimal static portfolio of this expanded set of assets.
This static solution gives us a vector of four portfolio weights x̃ that correspond
to each of the basis assets and managed portfolios in the matrix above. We
find the weight invested in the stock in each period by using the first and third
elements of x̃, that is, xs

t = x̃1 + x̃3zt . Similarly, the weight invested in the bond
in each period is xb

t = x̃2 + x̃4zt . Note that when we use the Markowitz solu-
tion (7) on the matrix of returns of the expanded asset set (30), the covariance
matrix and vector of means take into account both the covariances among re-
turns and between returns and lagged state variables. The latter covariances
capture the impact of return predictability on the optimal portfolio policy.

Consider now a two-period portfolio choice problem. We construct the matrix
of returns of the timing portfolios as described in equation (25)⎡⎢⎢⎣

rs
1 R f

1 R f
0 rs

2 rb
1 R f

1 R f
0 rb

2

rs
3 R f

3 R f
2 rs

4 rb
3 R f

3 R f
2 rb

4

rs
5 R f

5 R f
4 rs

6 rb
5 R f

5 R f
4 rb

6

⎤⎥⎥⎦ . (31)

This matrix contains two-period nonoverlapping returns of four trading strate-
gies. The corresponding optimal portfolio vector x̃ gives us the weights on “stock
in period 1,” “stock in period 2,” “bond in period 1,” and “bond in period 2.” The
covariance matrix and vector of means that show up in the static portfolio so-
lution account for the contemporaneous covariances of returns as well as the
one-period serial covariances of returns. The latter covariances induce hedging
demands.

Finally, we consider a two-period problem with the conditioning variable. The
returns of the expanded asset set are⎡⎢⎢⎣

rs
1 R f

1 R f
0 rs

2 rb
1 R f

1 R f
0 rb

2 z0rs
1 R f

1 R f
0 z1rs

2 z0rb
1 R f

1 R f
0 z1rb

2

rs
3 R f

3 R f
2 rs

4 rb
3 R f

3 R f
2 rb

4 z2rs
3 R f

3 R f
2 z3rs

4 z2rb
3 R f

3 R f
2 z3rb

4

rs
5 R f

5 R f
4 rs

6 rb
5 R f

5 R f
4 rb

6 z4rs
5 R f

5 R f
4 z5rs

6 z4rb
5 R f

5 R f
4 z5rb

6

⎤⎥⎥⎦ . (32)

The optimal portfolio of these eight assets now includes, for example, the allo-
cation to “stock in period 1, conditional on the level of z.” The portfolio solution
takes into account the covariances between returns and state variables over
subsequent periods.

D. Importance of the Compounding Terms

Our approach to the multiperiod portfolio problem relies critically on the
presumption that the compounding terms (i.e., the cross-products of the excess
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returns in different time periods) are negligible relative to the returns on the
timing portfolios. We now examine to what extent and under which circum-
stances this is valid.

We apply our method to the following model for monthly excess stock and
bond returns (the basis assets) and the term spread (the state variable)⎡⎢⎣ ln

(
1 + rs

t+1

)
ln

(
1 + rb

t+1

)
zt+1

⎤⎥⎦ =

⎡⎢⎣ 0.0059

0.0007

−0.0028

⎤⎥⎦ +

⎡⎢⎣0.0060

0.0035

0.9597

⎤⎥⎦ × zt +

⎡⎢⎣ εs
t+1

εb
t+1

εz
t+1

⎤⎥⎦ , (33)

with ⎡⎢⎣ εs
t+1

εb
t+1

εz
t+1

⎤⎥⎦ ∼ MVN

⎡⎢⎣0,

⎡⎢⎣ 0.0018 0.0002 −0.0005

0.0002 0.0006 0.0007

−0.0005 0.0007 0.0802

⎤⎥⎦
⎤⎥⎦ . (34)

The choice of state variable is based on our empirical results in Section IV,
where we identify the term spread as an important return predictor (other
important predictors include the dividend yield and the detrended short-term
interest rate). The functional form of the model follows the literature on port-
folio choice under predictability and is also related to our setup in Section II.
The parameter values are OLS estimates based on monthly data from January
1945 through December 2000.

To assess the importance of the compounding terms in the solution of the
multiperiod portfolio problem, we compare portfolio policies that ignore the
compounding terms (using our simplified approach based on the timing port-
folios) to policies that incorporate the compounding terms (obtained through
numerical optimization). We label these solutions “approximate” and “exact,”
respectively.3 Intuitively, there are two factors that affect the role of the
compounding terms, specifically, the rebalancing frequency and the portfolio
horizon. The less frequently the portfolio is rebalanced, the larger are the mag-
nitudes of the excess returns per period, and therefore the larger are the magni-
tudes of the compounding terms; the longer the horizon, the more compounding
terms there are in the expanded budget constraint. Hence, we study multiperiod
portfolio problems with rebalancing frequencies ranging from monthly to an-
nual and horizons ranging from 1 to 20 years.

The results of our experiments are displayed in Table I. The table describes
the multiperiod returns from the approximate and exact portfolio policies for
an investor with quadratic utility and γ = 5, the value we use in our empirical
application. Panel A presents the results for unconditional portfolio policies

3 The exact solution is obtained by numerically maximizing the expected utility of terminal
wealth with respect to the portfolio weights in every period. For a given set of portfolio weights, the
moments of the multiperiod portfolio returns are evaluated using 5,000,000 data points simulated
from the model (33). To keep the comparison as fair as possible and to abstract from sampling error,
we use the same simulations to evaluate the moments of the timing portfolios for the approximate
solution.
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and Panel B presents the results for conditional policies in which the stock and
bond returns each period are scaled by the state variable. Each panel reports
the average absolute difference between the approximate versus exact portfolio
weights, the difference (as level and percentage in parentheses) in the Sharpe
ratios of the two portfolios, and the equalization fee (as level and percentage in
parentheses), defined as the yearly fee the investor would be willing to pay to
be able to use the exact instead of approximate allocations.

Reviewing the results across horizons, rebalancing frequencies, and panels,
it is clear that, consistent with our intuition, the compounding terms are rela-
tively unimportant for short horizons but become important for long horizons.
For example, with a 2-year horizon, the equalization fee ranges from four ba-
sis points (0.9% of the certainty equivalent) with semiannual rebalancing and
no conditioning information to 28 basis points (5% of the certainty equivalent)
with monthly rebalancing and conditioning information. Even with a 5-year
horizon, the largest equalization fee is 1.4% (10.7% of the certainty equiva-
lent). For horizons beyond 5 years, however, the quality of our approximation
deteriorates substantially. With a 10-year horizon, quarterly rebalancing, and
conditioning information, for instance, the equalization fee is 12.4%, which con-
stitutes more than one-third of the certainty equivalent of the exact solution.

Analyzing the results more closely reveals some intuitive patterns. The im-
portance of the compounding terms increases with the horizon (holding constant
the rebalancing frequency) as well as with the rebalancing frequency (holding
constant the horizon). The compounding terms are more important for the con-
ditional polices because these are associated with a higher expected growth
rate of wealth and a larger number of compounding terms due to the inclusion
of the scaled returns.

We conclude from this experiment that our approach of solving the multi-
period portfolio problem with timing portfolios, which ignore the compounding
of excess returns over time, results in little economic loss for short-horizon prob-
lems (e.g., a market timing mutual fund with 1- to 5-year horizons) but is far
less suitable for long-horizon problems (e.g., a pension fund with 20- to 30-year
horizons). For the specific data-generating process in equation (33), the approx-
imation error results in an expected utility loss of 10% or less for horizons up to
5 years. An economic loss of this magnitude seems acceptable given the compu-
tational gains that arise from the simplicity of our approach, especially when
compared to the usual numerical solutions of multiperiod portfolio problems.

II. Optimal Portfolio Weights Implied by a VAR

Our approach can be data intensive for solving portfolio problems with very
long horizons. However, this issue can be overcome by using a statistical model
for the returns and state variables. For example, consider a problem with a
single risky asset and one conditioning variable, and assume that the log (gross)
return and log conditioning variable evolve jointly according to the restricted
VAR with normally distributed innovations
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[
ln Rt+1

ln zt+1

]
=

[
a1

a2

]
+

[
b1

b2

]
ln zt + εt+1, (35)

where εt+1 ∼ N[0, 
]. We also assume for simplicity that the risk-free rate is
constant.

The dynamics of returns in equation (35) imply the following expanded VAR:

ln Yt+1 = A + B ln Yt + νt+1, (36)

where ln Yt+1 = [ln Rt+1, ln zt+1, ln zt, ln zt + ln Rt+1]� and ηt+1 ∼ N[0, 
] with

A =

⎡⎢⎢⎢⎢⎣
a1

a2

0

a1

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎣
0 b1 0 0

0 b2 0 0

0 1 0 0

0 b1 + 1 0 0

⎤⎥⎥⎥⎥⎦ , and 
 =

⎡⎢⎢⎢⎢⎣
ω11 ω12 0 ω11

ω12 ω22 0 ω12

0 0 0 0

ω11 ω12 0 ω11

⎤⎥⎥⎥⎥⎦ . (37)

In 
, ωij are the elements of the covariance matrix 
. The first two unconditional
moments of this expanded VAR are given by

μ ≡ E[ln Yt+1] = (I − B)−1 A

vec(�) ≡ vec(Var[ln Yt+1]) = (I − B ⊗ B)vec(
).
(38)

We use this expanded VAR to solve for the moments of returns involved in our
solution to the dynamic portfolio choice problem.

A. Single-Period Problem

First, consider the single-period portfolio problem. Following equation (12),
we construct excess returns on the managed portfolios, that is,

r̃t+1 = [
Rt+1 − R f , zt

(
Rt+1 − R f )]�

. (39)

From the extended VAR (38), these returns can be written as

r̃t+1 = �Yt+1 + λ, (40)

where

� =
[

1 0 0 0

0 0 −R f 1

]
and λ =

[
−R f

0

]
. (41)

The optimal single-period portfolio choice for the expanded asset space in equa-
tion (16) depends on the first two moments of these returns, which are given
by

E[r̃t+1] = �E[Yt+1] + λ and Var[r̃t+1] = �Var[Yt+1]��, (42)
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where, from the joint log-normality of Yt+1 and the unconditional moments of
the VAR,

E[Yt+1] = exp
{

E[ln Yt+1] + 1
2

Diag[Var[ln Yt+1]]
}

Var[Yt+1] = (exp{Var[ln Yt+1]} − 1)E[Yt+1]E[Yt+1]�.

(43)

The moments in equation (42), and hence the optimal portfolio weights, can
therefore be evaluated using the unconditional moments of the VAR in equ-
ation (38).

B. Multiperiod Portfolio Choice

Next, consider a two-period dynamic problem. The excess returns of the con-
ditional and timing portfolios are

r̃t→t+2

= [ (
Rt+1 − R f )R f , zt

(
Rt+1 − R f )R f︸ ︷︷ ︸

stocks in period 1,

conditional on z

, R f (Rt+2 − R f ), R f zt+1
(
Rt+2 − R f )︸ ︷︷ ︸

stocks in period 2,

conditional on z

]

= R f

([
� 0

0 �

] [
Yt+1

Yt+2

]
+

[
λ

λ

])�
. (44)

The corresponding first and second moments are

E[r̃t→t+2] = R f

([
� 0

0 �

]
E

[
Yt+1

Yt+2

]
+

[
λ

λ

])

Var[r̃t→t+2] = (R f )2

[
� 0

0 �

]
Var

[
Yt+1

Yt+2

] [
�� 0

0 ��

]
,

(45)

where

E

[
Yt+1

Yt+2

]
= exp

{
E

[
ln Yt+1

ln Yt+2

]
+ 1

2
Diag

[
Var

[
ln Yt+1

ln Yt+2

]]}

Var

[
Yt+1

Yt+2

]
=

(
exp

{
Var

[
ln Yt+1

ln Yt+2

]}
− 1

)
E

[
Yt+1

Yt+2

]
E

[
Yt+1

Yt+2

]�
,

(46)
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and from the unconditional moments of the VAR

E

[
ln Yt+1

ln Yt+2

]
=

[
μ

μ

]

Var

[
ln Yt+1

ln Yt+2

]
=

[
� B�

B� �

]
.

(47)

Finally, consider an N-period dynamic problem. Using basic matrix algebra,
the excess returns on the conditional and timing portfolios can be written as

r̃t→t+N = (R f )N−1

⎛⎜⎝(IN ⊗ �)

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦ + (ιN ⊗ λ)

⎞⎟⎠ , (48)

where IN and ιN denote an N-dimensional identity matrix and vector of ones,
respectively. The corresponding first and second moments are

E[r̃t→t+N ] = (R f )N−1

⎛⎜⎝(IN ⊗ �)E

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦ + (ιN ⊗ λ)

⎞⎟⎠

Var[r̃t→t+N ] = (R f )2(N−1)(IN ⊗ �)Var

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦ (
IN ⊗ ��)

,

(49)

where

E

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦ = exp

⎧⎪⎨⎪⎩E

⎡⎢⎣ ln Yt+1

· · ·
ln Yt+Nfs

⎤⎥⎦ + 1
2

Diag

⎡⎢⎣Var
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· · ·
ln Yt+N

⎤⎥⎦
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Var

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦ =

⎛⎜⎝exp

⎧⎪⎨⎪⎩Var

⎡⎢⎣ ln Yt+1

· · ·
ln Yt+N
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⎫⎪⎬⎪⎭ − 1

⎞⎟⎠ E

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦ E

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦
�

(50)
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and

E

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦ = ιN ⊗ μ

Var

⎡⎢⎣ Yt+1

· · ·
Yt+N

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎣
B0 B1 B2 · · · BN−1

B1 B0 B1 · · · BN−2

· · · · · · · · · · · · · · ·
BN−1 BN−2 BN−3 · · · B0

⎤⎥⎥⎥⎥⎦ ⊗ �.

(51)

To summarize, the optimal portfolio weights for the N-period dynamic problem
with conditional and timing portfolios, which depend on the first and second
moments of the managed portfolio returns, can be evaluated analytically using
the coefficient matrix B and the unconditional moments μ and � of the VAR
(which in turn depend on A, B, and 
). Since we can estimate the VAR with a
relatively modest time series of returns and state variable realizations, we can
solve dynamic portfolio choice problems with arbitrarily long horizons using
finite data samples in this VAR context. Of course, this comes at the cost of
having to impose strong structure on the dynamics of returns.

III. Extensions and Refinements

One can extend and refine our approach along a number of dimensions. In
this section, we show how to generalize the investor’s utility function and how to
compute robust portfolio weights for a large number of assets using techniques
developed originally for the static Markowitz approach.

A. Objective Functions

The mean-variance objective function can be extended to an arbitrary utility
function u(Wt+1). In that case, we solve the problem

max
θ

Et
[
u
(
R f

t + (θzt)�rt+1
)]

, (52)

or the corresponding first-order conditions, using numerical optimization meth-
ods. While high-dimensional numeric solutions are nontrivial, our approach
benefits from being static and unconstrained (since we ignore the compounding
terms). Furthermore, the extensive literature on effective and fast algorithms
for solving high-dimensional optimization problems applies to our framework.
These algorithms include variants of the Newton method (e.g., Conn, Gould,
and Toint (1988), Moré and Toraldo (1989)), the quasi-Newton method (e.g.,
Byrd et al. (1995)), and the sequential quadratic programming approach (e.g.,
Gill, Murray, and Saunders (2002)).

The quadratic objective function (4) can be interpreted alternatively as a
second-order approximation of a more general utility function, such as power or
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more general hyperbolic absolute risk aversion (HARA) preferences. To increase
the precision of this approximation, Brandt et al. (2005) propose a fourth-order
expansion that includes adjustments for the skewness and kurtosis of returns,
and their effects on expected utility. Specifically, the expansion of expected
utility around the current wealth growing at the risk-free rate is

Et[u(Wt+1)] ≈ Et

[
u
(
Wt R f

t
) + u′(Wt R f

t
)(

Wt x�
t rt+1

) + 1
2

u′′(Wt R f
t
)(

Wt x�
t rt+1

)2

+ 1
6

u′′′(Wt R f
t
)(

Wt x�
t rt+1

)3 + 1
24

u′′′′(Wt R f
t
)(

Wt x�
t rt+1

)4
]

. (53)

In this case, the first-order conditions define an implicit solution for the optimal
weights in terms of the joint moments of the derivatives of the utility function
and returns, given by,

xt ≈ −{
Et

[
u′′(Wt R f

t
)(

rt+1r�
t+1

)]
W 2

t

}−1 ×
{

Et
[
u′(Wt R f

t
)
(rt+1)

]
Wt

+ 1
2

Et

[
u′′′(Wt R f

t
)(

x�
t rt+1

)2rt+1

]
W 3

t

+ 1
6

Et

[
u′′′′(Wt R f

t
)(

x�
t rt+1

)3rt+1

]
W 4

t

}
. (54)

In practice, this implicit expression for the optimal weights is easy to solve.
Start with an initial “guess” for the optimal weights (such as equal weights in
each asset), denoted by xt(0). Then enter this guess on the right-hand side of
equation (54) and obtain a new solution for the optimal weights on the left-hand
side, denoted by xt(1). After a few iterations n, the guess xt(n) is very close to
the solution xt(n + 1) and we can take this value to be the solution of equa-
tion (54). Brandt et al. (2005) show that this expansion is highly accurate for
investment horizons up to 1 year, even when returns are far from normally dis-
tributed. Use of this expansion approach in our extended asset space approach
is straightforward.

We can also consider performance benchmarks in the objective function. Fre-
quently, money managers are evaluated on their performance relative to a
benchmark index portfolio over a given period. Such problems can be solved
easily with our approach. Simply use returns of the basis assets in excess of
the benchmark index (instead of in excess of the risk-free rate) in the port-
folio optimization. In this case, the objective function involving these excess
returns captures the gain from beating the benchmark index with low tracking
error. The optimal portfolio weights can be interpreted as deviations from the
benchmark, which are usually termed as “active” weights.

Finally, we can expand the mean-variance objective to penalize covariance
with the return of a particular portfolio such as the market index, denoted by
rm.4 In this case, the objective is

4 Or, similarly, penalize covariance with consumption growth.
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Et

[
r p

t+1 − γ

2
(
r p

t+1

)2 − λr p
t+1rm

t+1

]
, (55)

with some positive penalty constant λ. Replacing population moments by sam-
ple moments, the solution in the unconditional case is

x = 1
γ

[
T−1∑
t=1

rt+1r�
t+1

]−1 [
T−1∑
t=1

(
1 − λrm

t+1

)
rt+1

]
, (56)

which can be extended trivially to the conditional and multiperiod problems.

B. Constraints, Shrinkage, and Prior Views

A benefit of framing the dynamic portfolio problem in a static context is
that we have available all of the refinements of the Markowitz approach that
have been developed over the past decades. These include the use of portfolio
constraints to avoid extreme positions (e.g., Frost and Savarino (1988), Jagan-
nathan and Ma (2003)), the use of shrinkage to improve the estimates of the
means (e.g., Jobson and Korkie (1981)) as well as of the covariance matrix (e.g.,
Ledoit (1995)), and the combination of the investor’s prior from an alternative
data source or the belief in a pricing model with the information contained in
returns (e.g., Treynor and Black (1973), Black and Litterman (1992), and Pastor
and Stambaugh (2000)).

For the last approach, which is particularly useful in practice, a natural prior
is that the market is in equilibrium. In that case the market portfolio is the
tangency portfolio. Suppose that the estimated portfolio weight on asset i is of
the form xi

t = a + bzt, and assume that z has been standardized to have mean
zero. Using the equilibrium prior, we would shrink a toward the market capi-
talization weight of the asset and b toward zero. The shrinkage weights can be
determined from the standard errors of the estimates of a and b, coupled with
a prior on the efficiency of the market.

IV. Application

There is substantial evidence that economic variables related to the busi-
ness cycle help forecast stock and bond returns. For instance, Campbell (1991),
Campbell and Shiller (1988), Fama (1990), Fama and French (1988, 1989),
Hodrick (1992), and Keim and Stambaugh (1986) report evidence that stock
market returns are predicted by the dividend-price ratio, short-term inter-
est rate, term spread, and credit spread. Fama and French (1989) show that
the same variables also predict bond returns. We use these four condition-
ing variables in a simple application of our method to the dynamic portfo-
lio choice among stocks, bonds, and cash. This application is similar to that
of Brennan, Schwartz, and Lagnado (1997) and Campbell, Chan, and Viceira
(2003).
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We use as proxy for stocks the CRSP value-weighted market index, for bonds
the index of long-term Treasuries constructed by Ibbotson Associates, and for
cash the 1-month Treasury bill, also obtained from Ibbotson Associates. The
dividend-price ratio (DP) is calculated as the difference between the log of the
last 12 months of dividends and the log of the current price of the CRSP value-
weighted index. The relative Treasury bill (Tbill) stochastically detrends the
raw series by taking the difference between the Treasury bill rate and its 12-
month moving average. The term spread (Term) is the difference between the
yields on 10-year and 1-year government bonds. The default spread (Default) is
calculated as the difference between the yield on BAA- and AAA-rated corporate
bonds. We obtain interest rate data from the DRI/Citibase database, and we
standardize the four predictors to ease the interpretation of the coefficients
of the portfolio policy. The sample period is January 1945 through December
2000.

Table II reports the results for both unconditional and conditional portfolio
policies at monthly, quarterly, and annual holding periods, assuming the in-
vestor has quadratic utility with γ = 5. Some differences in the unconditional
portfolio weights exist across the three holding periods. With monthly or quar-
terly rebalancing, the weight in equities is 77%, whereas it is only 57% with
annual rebalancing. This pattern is due to differences in the joint distribution
of stock and bond excess returns over the different holding periods. In partic-
ular, the small amount of positive serial correlation in returns at the monthly
and quarterly frequencies turns negative at the annual frequency, which makes
the volatility of stock and bond returns proportionately higher at the annual
frequency (15.6% vs. 14.5% for stocks and 9.8% vs. 8.4% for bonds). The weight
invested in bonds is close to zero for all holding periods, so the investor allocates
roughly 25% to 45% to the risk-free asset.

The conditional policies are quite sensitive to the state variables. For the
monthly conditional policy, the coefficients of the stock weight on Default and
DP as well as the coefficients of the bond weight on DP and TBill are all signif-
icant at the 5% level. Furthermore, the average allocations to stocks and bonds
by the conditional policy are 87% and 29%, respectively, which significantly ex-
ceed the corresponding unconditional allocations of 77% and −1%. The reason
is that the predictability in the first and second moments of returns allows the
investor to be more aggressive on average since the exposure can be reduced in
bad times (i.e., times in which the mean return of the optimal portfolio is low
and/or its volatility is high). An F-test of the hypothesis that all coefficients on
the state variables are equal to zero has a p-value of zero. Finally, the (annual-
ized) Sharpe ratio of the conditional policy is 1.00, which is nearly 70% higher
than that of the unconditional policy of 0.59. Overall, it is clear that on aver-
age the conditional return distribution is very different from the unconditional
return distribution.

The results are less pronounced for the longer holding periods. At the quar-
terly horizon, for example, only the coefficients of the bond weight on Term are
significant at the 5% level (the coefficients of the stock weight on Term and TBill
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Figure 1. Portfolio weights of conditional and unconditional policies. This figure displays
the time series of conditional portfolio weights. The solid line corresponds to the portfolio weight on
the stock and the dash–dotted line corresponds to the portfolio weight on the bond. The constant
portfolio weights from the unconditional policy are depicted as straight lines.

are significant at the 10% level). However, the hypothesis that all coefficients
are zero is still rejected with a p-value of zero. More importantly, the Sharpe
ratio of the conditional policy is still 40% higher than that of the unconditional
policy, with a value of 0.86 versus 0.60. The results for the annual policy are
qualitatively similar, with an increase in the Sharpe ratio from 0.57 to 0.94 due
to conditioning.

Figure 1 displays the time series of portfolio weights of the conditional poli-
cies. For comparison, the figure also shows the unconditional portfolio weights.
Overall, the shorter the holding period, the more extreme positions the policies
take at times (note the different scales on the y-axis). It is striking that the
conditional policies can be substantially different at different frequencies.

The most striking difference in the portfolio policies across horizons lies in
the average bond holdings (corresponding to the bond intercepts of the portfolio
policy). With monthly rebalancing, the optimal conditional allocation to bonds
is 29%. With annual rebalancing, in contrast, the portfolio is short 70% bonds.
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These extreme differences in portfolio weights are due to drastic changes in the
conditional volatilities and correlations of bond and stock returns across hori-
zons. At a monthly frequency, the average annualized conditional volatilities of
stock and bond returns are 11.2% and 5.8%, respectively, with an average con-
ditional correlation of 0.22. At the annual frequency, the average conditional
volatility of stock returns increases to 12.5% while the average conditional
volatility of bond returns drops to 5.5%. Most importantly, the average condi-
tional correlation increases to 0.37. Given the positive correlation, a risk-averse
investor shorts bonds at long horizons to diversify. And since the risk premium
on bonds is very small relative to that of stocks (1% compared to more than 8%
in our sample), shorting bonds is not very costly. This effect is stronger at the
annual frequency given the higher average conditional correlation. In addition
to this diversification effect, with annual rebalancing, the portfolio policy is
not sufficiently responsive to the predictors to sell bonds during the short peri-
ods of time in the early 1980s when bond returns were extremely volatile and
negative. With monthly rebalancing, in contrast, the portfolio policy is flexible
enough to be long bonds at the beginning and end of the sample, while being
very short bonds during periods in the early 1980s. In some sense, in order to
be short bonds in the 1980s, the annual policy needs to also be short bonds in
other time periods, making the bond holdings negative on average. The monthly
policy is more flexible. It is able to take negative bond positions in bad months
while on average holding a positive weight in bonds. This difference between
the monthly and yearly bond position is apparent in the volatility of the bond
portfolio weights exhibited in the top plot of Figure 1.

By focusing directly on the portfolio weights we capture time variation in
the entire return distribution as opposed to just the expected returns. To get
a sense of the importance of this aspect of our approach, we compare the con-
ditional policies to more traditional strategies based only on predictive return
regressions. Specifically, we regress the excess stock and bond returns on the
state variables and then use the corresponding one-period-ahead forecasts of
the returns together with the unconditional covariance matrix to form portfolio
weights. In this way, the strategy only takes into account the predictability of
expected returns and ignores the impact of the state variables on variances
and covariances. Table III compares the two approaches, and Figure 2 plots the
time series of portfolio weights on the stock.

The advantage of our approach is most apparent at the monthly frequency.
Although our conditional strategy generates a lower premium of 18.5% versus
25.5% per year, it has proportionally much lower volatility of 18.5% versus
28.6% per year, resulting in a Sharpe ratio that is 12% higher (1.01 compared
to 0.89). In fact, the investor is willing to pay an annual fee of 5.6% to obtain
the improved performance associated with exploiting the joint time variation
of the entire return distribution, as opposed to using the time variation of the
mean returns only.

To get a more clear sense of where this performance improvement is coming
from, compare the coefficients of the monthly portfolio policy in Table II to the
regression coefficients in Table III. The most striking difference is that Default
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Table III
Traditional versus Optimal Conditional Policies

This table reports estimates of the traditional approach to tactical asset allocation. In this approach,
conditional expected returns are obtained from an in-sample regression of returns on the state
variables and the Markowitz solution is applied to these conditional expected returns together
with the unconditional covariance matrix. Panel A displays the estimated regressions of stock and
bond returns on the conditioning variables, each estimated at the monthly, quarterly, and annual
frequency. Panel B summarizes the traditional portfolio policy (Trdnl) and, for comparison, the full
conditional policy (Cndtnl) that takes into account the impact of the conditioning variables both on
expected returns and their covariance matrix. The first two rows present the time-series average
of the weights on stocks and bonds of the two policies. The next three lines offer statistics for the
time series of portfolio returns. The last row shows the equalization fee, defined as the yearly fee
that the investor would be willing to pay to be able to use the full conditional policy instead of using
the traditional approach.

Panel A: Regression Estimates

Coefficient Monthly Quarterly Annual

Stock Cnst 0.0829 (0.0191) 0.0779 (0.0188) 0.0838 (0.0213)
Term 0.0276 (0.0230) 0.0340 (0.0224) 0.0336 (0.0244)
Default 0.0116 (0.0204) 0.0061 (0.0207) −0.0061 (0.0229)
DP −0.0206 (0.0195) 0.0144 (0.0194) 0.0340 (0.0219)
Tbill −0.0756 (0.0238) −0.0534 (0.0259) −0.0217 (0.0335)
R2 0.0384 0.0718 0.1139

Bond Cnst 0.0120 (0.0111) 0.0134 (0.0109) 0.0138 (0.0113)
Term 0.0586 (0.0133) 0.0524 (0.0129) 0.0553 (0.0130)
Default 0.0424 (0.0118) 0.0275 (0.0120) 0.0178 (0.0122)
DP −0.0087 (0.0113) −0.0017 (0.0112) −0.0025 (0.0116)
Tbill 0.0373 (0.0138) 0.0233 (0.0149) 0.0023 (0.0177)
R2 0.0432 0.0919 0.365

Panel B: Portfolio Policies

Monthly Quarterly Annual

Trdnl Cndtnl Trdnl Cndtnl Trdnl Cndtnl

Mean weight stock 0.7833 0.8728 0.8342 0.6486 0.7484 0.5914
Mean weight bond −0.0052 0.2911 −0.0436 −0.0842 −0.0969 −0.6958

Mean excess return 0.2552 0.1849 0.1877 0.1262 0.1489 0.0945
SD return 0.2868 0.1849 0.2617 0.1461 0.1909 0.1008
Sharpe ratio 0.8901 1.0001 0.7172 0.8638 0.7801 0.9375
Equalization fee 0.0560 0.0679 0.0432

and DP have opposite signs in the regressions (for both stocks and bonds, the
Default coefficient is positive and the DP coefficient is negative) compared to
the conditional portfolio weights. Furthermore, only Default is significant in the
regression for bonds, while Default and DP are significant (with opposite signs)
in the stock portfolio weight and DP is significant (again, with opposite sign)
in the bond portfolio weight. The reason is that Default and DP are significant
predictors of volatility, in particular of bond return volatility. Together, Default
and DP explain 2.3% of absolute stock returns and 21% of absolute bond returns
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Figure 2. Portfolio weights of conditional and regression-based policies. This figure dis-
plays the time series of the portfolio weight on the stock obtained from the conditional approach
(solid line) and from the regression-based approach (dashed line). In the regression-based approach,
conditional-expected returns are computed from an in-sample regression of returns on the state
variables, and the Markowitz solution is applied to these conditional-expected returns together
with the unconditional covariance matrix.

in our sample, with positive coefficients on Default and negative coefficients on
DP. Consequently, the conditional portfolio weights load strongly negatively
on Default and strongly positively on DP, resulting in very different allocations
relative to the traditional policy, in particular for bonds (average holding of 29%
as opposed to −1%).

Although the differences between the two strategies are less dramatic at
lower frequencies, the conclusion holds nevertheless. The fee the investor is
willing to pay for using the conditional strategy as opposed to the regression
approach is 6.8% with quarterly rebalancing and 4.3% with annual rebalancing.
Furthermore, the differences in the signs of the coefficients are all explained
by the predictive power of the state variables for the second moments of stock
and bond returns.

We now turn our attention to multiperiod strategies. Table IV reports
the portfolio weights of the multiperiod portfolio policy for a 1-year horizon
with monthly or quarterly rebalancing. For simplicity, we report only the
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Table IV
Multiperiod Portfolio Policies

This table shows estimates of the multiperiod portfolio policy with a 1-year horizon and monthly or
quarterly rebalancing. Standard errors for the coefficients of the portfolio policies are in parentheses. The
p-value refers to an F-test of the hypothesis that all the coefficients on the state variables other than the
constant are jointly zero. The next three rows present statistics of the returns generated by the portfolio
policies. Finally, the last row shows the equalization fee, defined as the yearly fee that the investor would
be willing to pay to be able to use the conditional instead of the unconditional policy.

Monthly Quarterly
Month/ State

Asset Quarter Variable Unconditional Conditional Unconditional Conditional

Stock 1/1 Cnst 0.6276 (0.1602) 0.6779 (0.1598) 0.6332 (0.1188) 0.6200 (0.1622)
Tbill −0.6908 (0.2834) −0.2541 (0.1499)

4/2 Cnst 0.6205 (0.1645) 0.5810 (0.1621) 0.6169 (0.1171) 0.5750 (0.1656)
Tbill −0.2905 (0.2856) −0.2059 (0.1565)

8/3 Cnst 0.5508 (0.1671) 0.5191 (0.1653) 0.5505 (0.1172) 0.5587 (0.1688)
Tbill 0.0794 (0.2814) −0.2569 (0.1622)

12/4 Cnst 0.4837 (0.1645) 0.4138 (0.1617) 0.5461 (0.1198) 0.4104 (0.1649)
Tbill 0.3763 (0.2823) −0.3857 (0.1577)

Bond 1/1 Cnst −0.6860 (0.2891) −0.2978 (0.1390) −0.5543 (0.2901) −0.7115 (0.2971)
Tbill 0.0805 (0.1729) 0.2125 (0.2200)

4/2 Cnst −0.3405 (0.2906) −0.1860 (0.1432) −0.2712 (0.2942) −0.2843 (0.2985)
Tbill −0.0424 (0.1731) 0.1940 (0.2256)

8/3 Cnst 0.0329 (0.2875) −0.1290 (0.1438) −0.0256 (0.1873) −0.0623 (0.3010)
Tbill −0.0968 (0.1735) −0.0078 (0.2103)

12/4 Cnst 0.4628 (0.2849) −0.4408 (0.1409) 0.2923 (0.2855) 0.2884 (0.2989)
Tbill 0.0161 (0.1715) 0.0151 (0.2093)

p-value 0.0000 0.0000 0.0000 0.0000
Mean excess return 0.0507 0.0687 0.0526 0.0658
SD return 0.0871 0.0951 0.0883 0.0942
Sharpe ratio 0.5824 0.7224 0.4740 0.6985
Equalization fee 0.0143 0.0105

unconditional strategy and the conditional strategy with a single state variable,
the detrended T-bill rate. The table reports the estimated portfolio weights for
month 1, 4, 8, and 12 as well as for all four quarters of the 12-month or four-
quarter problems.

With monthly rebalancing, the weight on stocks decreases and the weight on
bonds increases as the end of the horizon approaches. This horizon pattern is
roughly the same for the unconditional and conditional policies, which means
that it is generated by the serial-covariance structure of the returns on the basis
assets. With quarterly rebalancing, the unconditional and average conditional
(the constant term in the conditional policy) stock holdings are similar to each
other and to the results with monthly rebalancing. The unconditional and aver-
age conditional bond holdings, in contrast, are very different from each other. In
the unconditional policy, the bond holding increases from −69% to 46% as the
end of the horizon approaches, while in the conditional policy the average bond
holding decreases from −30% to −44% percent.5 This difference in the horizon

5 The multiperiod allocations cannot be directly compared to the single-period ones. In particular,
the positive bond holdings in the single-period problem are driven by the bond return predictability
from Default and DP, both of which are not included in the multiperiod problem.
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patterns can only be attributed to the serial-covariance structure of the con-
ditional portfolio returns, which illustrates the importance of augmenting the
asset space in this multiperiod problem.

V. Conclusion

We present a simple approach for dynamic portfolio selection. The model
extends the Markowitz approach to the choice between managed portfolios,
specifically, between conditional portfolios that invest in each asset an amount
that is proportional to some conditioning variable and timing portfolios that
invest in each asset for a single period and in the risk-free asset for all other
periods. The intuition underlying our approach is that the static choice among
these mechanically managed portfolios is equivalent to a dynamic strategy in
the basis assets. Our hope is that, by making dynamic portfolio selection no
more difficult to implement than the static Markowitz approach, it will finally
leave the confines of the ivory tower and make its way into the day-to-day
practice of the investment industry.
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