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Explaining the Variance of
Price-Dividend Ratios

John H. Cochrane
University of Chicago

Ireport a bound on the variance of price-dividend
ratios and a decomposition of their variance into
terms that reflect changes in dividend growth and
discount rates. The specification is not restrictive.
The test statistics do not require construction of
ex post present values; instead, they are restric-
tions on means, variances, and covariances of
price-dividend ratios, dividend growth, and dis-
count rates. I consider implications for the mean
price-dividend ratio, and I evaluate whether a low
mean discount rate can rationalize the mean and
variance of price-dividend ratios. The results do
not indicate any striking rejections of present-
value models. However, the bulk of the variance of
price-dividend ratios must be accounted for by
changing forecasts of discount rates, and discount
rates must possess some unusual characteristics.

Stock prices are volatile, yet dividends and the usual
measures of the discount rate are relatively smooth.
Are prices too volatile? In this article, I reexamine
two volatility tests that address this question, a vari-
ance bound and a variance decomposition.

Why reexamine volatility tests? In the view of many
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financial economists, price-based volatility tests seem to give quali-
tatively different information from return-based Euler equation tests.
As a result, volatility-test rejections are often interpreted to reject
rational asset pricing in general, where Euler-equation rejections sim-
ply suggest adjustments to existing asset-pricing models [see Shiller
(1989), Cochrane (1991b)]. However, volatility tests have been
plagued by controversies over their specification. This situation moti-
vates another look at volatility tests, taking care to overcome as many
of the specification problems as possible.

The basic idea of the tests is most easily explained in the context
of a constant discount factor present value model:!

P, = E, 2 Pth+j; ¢Y)
=1
where P, is the stock price at time ¢, D, is the dividend at time ¢, p is
the discount factor, and E, is the expectation operator conditional on
information at time ¢ Since var(E/(x)) =< var(x) for any random vari-
able x, (1) implies the variance bound

var(P,) < Var<2 pr,+j>. )
j=1

Taking the variance inside the sum, (2) can be expressed in terms

of the autocovariances of dividends rather than the ex post present

value,

02
1—p°

> el cov(D, D,_). 3)

j=—o

var(P) <

To derive the basic idea of the variance decomposition, multiply
both sides of the present-value relation (1) by P, — E(P,) and take
expectations, yielding

var(P,) = COV(P" E ijt+j> (4)
=1
or
var(P) = D} p/cov(P, D,.,). (5)
=1

Equations (4) and (5) reflect the fact that changes in the price must
reflect news about future dividends. Below, I derive versions of (4)

! The first tests by LeRoy and Porter (1981) and Shiller (1981) were roughly in the form of Equations
(2) and (4).
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Variance of Price-Dividend Ratios

and (5) that add a similar discount-rate term similar to the dividend
term in (4) and (5), and hence the name ‘‘variance decomposition.”

. Specification Issues and Discount Rate Models

A variety of specification issues have plagued volatility tests. In this
section, I discuss them, and my approach to their resolution.

1.1. Units

Since price and dividend levels are not stationary, there is no reason
to expect sample counterparts of (2)-(5) to hold. Volatility tests are,
in fact, quite sensitive to transformations that attempt to achieve sta-
tionarity, and many criticisms of the early tests centered on the appro-
priate transformation of variables. [See, among others, Kleidon (1986),
Marsh and Merton (1986), and West (1987, 1988). Shiller (1989) and
Gilles and LeRoy (1991) give excellent reviews of this literature.] For
this reason, I derive a variance bound and decomposition that use
the price-dividend ratio and dividend growth and discount rates,
which are more likely to be stationary. This specification follows the
practice in most current articles, including Campbell and Shiller
(1988), LeRoy and Parke (1990), and Mankiw, Romer, and Shapiro
(1991).

1.2 Terminal prices

Many volatility tests are implementations of equations analogous to
(2) and (4). [A recent example is Mankiw, Romer, and Shapiro (1991) ]
However, in a finite sample one must truncate the sums inside the
large parentheses of (2) and (4) with a terminal price. Also, one must
correct inferences for the severe serial correlation of these sums [see,
among others, Flavin (1983), Flood and Hodrick (1990), and Kleidon
(1986)].

For this reason, I use statistics that, like (3) and (5), are restrictions
on the covariance functions of price-dividend ratios, dividend growth
rates, and discount rates, and do not rely on the calculation of ex post
present values. Of course, one must also truncate sums of covariances
in expressions like (3) and (5), but it is reasonable to hope that the
covariances, or forecasts of dividend growth and discount rates, die
out more quickly than their ex post levels, alleviating the terminal
price and truncation problems.

1.3 Time-series restrictions

Many volatility tests restrict the time-series structure of the variables
they consider. For example, LeRoy and Parke (1990) assume that
dividends follow a pure random walk. However, as Shiller (1989)
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notes, negative serial correlation in dividend growth could overturn
their variance bound. The bound derived here allows an arbitrary
time-series structure for dividend growth, so it overcomes Shiller’s
objection. Similarly, Campbell and Shiller (1988) infer sums of covari-
ances in expressions similar to (4) from a VAR. Instead, I estimate
the covariances in analogues to (3) and (5) directly.

1.4 Mean price-dividend ratio and discount rates

If the mean discount rate is low enough, the present-value model is
consistent with an arbitrarily high variance of the price-dividend
ratio. To see this point, suppose expected dividend growth at ¢+ 1
rises, so dividends from ¢ + 1 on rise by AD. The price then rises by
AP = 3%, p/AD = pAD/(1 — p). Thus, a small change in dividend
growth can have an arbitrarily large effect on the price, if the discount
factor p is close enough to 1. However, if the discount factor is close
to 1, the mean price-dividend ratio will also be high. Hence, the
mean price-dividend ratio can be used to restrict the range of mean
discount rates one can invoke to explain the variance of the price-
dividend ratio.?

For this reason, I examine the model’s predictions for the mean
price-dividend ratio as well as its variance, and I examine the effect
of a range of assumed mean discount rates. Most volatility tests only
examine the present-value model’s implications for second moments,
and simply assume a ‘‘reasonable’” value for the mean (usually con-
stant) discount rate.

1.5 Time-varying discount rates, bubbles, and fads

Prices can vary, with no change in dividends, if discount rates vary.
However, and despite the volume of evidence for time-varying
expected returns, most volatility tests are still content to reject the
constant discount rate present-value model. [Campbell and Shiller
(1988) is one of the few exceptions.] I adopt a specification that allows
for a time-varying discount rate, and varying risk premiums across
assets.

Statistical rejections of present-value models have been interpreted
as support for three rough categories of alternatives. Each alternative
amounts to a different statement about discount rates. I treat discount
rates in three ways, to address each alternative. The alternatives are
as follows.

2 At first glance, one might think that the mean discount rate is easy to determine, but this is not
the case. For example, a common candidate is the mean return. But the discount rate is a single
object that prices many assets, and its mean cannot therefore be equal to the mean return on every
asset simultaneously.
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Variance of Price-Dividend Ratios

(i) Bubbles, that is, there is no discount-rate process that can ratio-
nalize the variance of price-dividend ratios. The present-value rela-
tion is derived from an Euler equation and a transversality condition.
Bubbles occur when the transversality condition fails. Since there
always exist discount rates that satisfy the Euler equation, the only
way that no discount rate can rationalize the present value model is
if there is a bubble.

To address this alternative, I calculate the variance bound and
decomposition with no assumptions on (unobserved) discount rates
beyond stationarity. I also calculate the variance bound and decom-
position using returns in the place of discount rates. Since 1 = R;4 R, ,
= E(R;4R...), the inverse return is a “‘discount factor’”’ that satisfies
the Euler equation by construction. A rejection in this case must be
attributed to bubbles rather than an incorrect discount factor model.?

(ii) Fads, that is, there is no reasonable discount-rate process that
can explain the variance of price-dividend ratios. Here it is admitted
that there exist unobserved discount-rate processes that can explain
the variance of price-dividend ratios. However, it is claimed that any
such discount-rate process must have extreme statistical properties
that discount-rate processes based on fundamentals are unlikely to
have. For example, Poterba and Summers (1988) calculate that dis-
count rates must have a standard deviation of 5.8 percent. They find
it “difficult to think of risk factors that could account for such variation
in required returns” (p. 51). Grossman and Shiller (1981), Hansen
and Jagannathan (1991), Mehra and Prescott (1985), and West (1988)
also present calculations that suggest that the standard deviation of
discount rates required to reconcile a variety of observations with the
present-value model is “too high.”

To address this alternative, I calculate mean-standard deviation
frontiers for the unobserved discount-rate processes one can invoke
to satisfy the volatility tests. Then, the reader can assess whether the
required discount rates are ‘“‘reasonable,” according to his or her
priors, or the implications of discount-rate models not considered
here. This methodology is close to that of Hansen and Jagannathan
(1991) and, more loosely, to Watson (1991).

(iii) Rejection of particular asset-pricing models. Asset-pricing
models tie discount rates to observables. For example, the consump-

3 However, the transversality condition is not testable in a finite sample, so this “test” should be
interpreted with caution [see Diba and Grossman (1988), Hamilton and Whiteman (1985), and
reviews in Cochrane (1991b) and especially Flood and Hodrick (1990)]. One way to state the
problem is that we can never be sure that prices are not responding to changing forecasts of
dividends and discount rates in the distant future. Also, the tests are derived under the null
hypothesis that no bubbles are present, and many test statistics do not have moments under the
alternative. Therefore, the power of the tests is an open question.
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tion-based model ties the discount rate to consumption growth, and
the CAPM ties it to the market return. Volatility tests can be con-
structed using specific asset-pricing or discount-rate models, and a
rejection can then be interpreted as a rejection of the asset-pricing
model. Most of the variance-bound literature tests constant discount
rates; Grossman and Shiller (1981) use consumption-based discount
rates; Campbell and Shiller (1988) also try a variety of interest rate-
based models.

1.6 Approximate present-value model

The exact present-value model expressed in terms of price-dividend
ratios, dividend growth, and discount rates is not linear, as (1) is.
Therefore, one must either construct tests based on ex post present
values using completely specified discount-rate models, or use an
approximately present-value model for which analogues to (3) and
(5) can be constructed. I follow the latter course.

The approximate present-value model is independently interesting,
since it endogenously generates cross-sectional variation in risk pre-
miums, unlike Campbell and Shiller’s (1988) similar linearization.
The mean price-dividend ratio varies across assets according to their
long-run correlation with the discount rate, generating a price version
of standard expected return models. In principle, this feature allows
one to conduct present-value tests on many assets simultaneously, as
Euler equation tests are routinely conducted. However, I do not exploit
cross-sectional predictions in this article.

Present-Value Model, Variance Bound, and Variance Decom-
position

This section derives and interprets analogues to the present value
(1), variance bound (3), and variance decomposition (5) that incor-
porate the specification issues mentioned above.

Start with a general one-period Euler equation:

1= Er('Y:+1Rt+1)a (©6)

where R,,, = (P,;, + D,;,)/P,and v,,, is the discount factor or inter-
temporal marginal rate of substitution.* (Appendix A contains a list
of all the symbols.) Iterating (6), together with the transversality
condition

4 This equation is “‘general” since a discount factor that satisfies (6) exists under weak no-arbitrage
conditions. See Hansen and Richard (1987). Hence, every asset-pricing model implies a represen-
tation of the form (6).
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; |
lim E,<H v,+k>P,+, =0,

o k=1

we obtain a similar general present-value model,

o= ol 3 (M-

However, prices and dividends are not stationary, so moments cal-
culated from this present-value model cannot be estimated by sample
counterparts. To reexpress the present-value model as a relation
between stationary variables, divide both sides by dividends,

== E 2 (I:I 7t+k> = = E, 2 H ('Yt+k77t+1e) (7)

D, j=1 k=1

where 7, = ,/ D,_,. Next, express the result in terms of log discount
rates, g, = —In(y,), and dividend growth rates, »n, = In(y,):

% = E, 2 eXp(E (nt+le - 8z+k)>- (8)

Under the assumption that price-dividend ratios, dividend growth,
and discount rates or factors are stationary, we can form tests based
on the implications of Equations (7) and (8) for moments of these
variables.’

Equations (7) and (8) are not linear in v, and n, or g, and 7,as (1)
is linear in D,, so we cannot take the expectation and variance oper-
ators inside the present value as we did to get rid of the ex post
present values in (3) and (5). To achieve the same result, I use an
approximation to the present-value model (8) for which analogues
to (3) and (5) can be derived. The approximate model is

P, Q Q -

—_— + Qi — —i — 8
D, 1-9 201- Q)Z,.gm covim = & oy = &)

Ez(E Qj(ﬁH,‘ - §;+j)), (9)

where 7%, = n, — E(n), § =g — E(g), and Q@ = &FW—£@,

Equation (9) is derived in Appendix B. Basically, I take a second-
order Taylor expansion of the term inside the expectation operator
in (8) with respect to 7,, ,and g,, ., about their unconditional means

Equations (7) and (8) are consistent with the assumption that price-dividend ratios, dividend
growth rates, and discount rates are stationary. In Appendix B, I discuss conditions under which
stationary dividend growth and discount rates imply a stationary price-dividend ratio.

249



| The Review of Financial Studies /v 5 n 2 1992

E(n) and E(g). This expression is linear and quadratic in 7, , — E(n)
and g,,, — E(g). Taking expectations, I obtain an expression in means,
variances, and covariances of z» and g, Equation (9). In Appendix B,
I also argue that the approximate model is reasonably accurate, and
compare it to the similar approximate model derived by Campbell
and Shiller (1988).

Taking the unconditional expected value of (9), we obtain the
mean price-dividend ratio,

P Q Q S o
E(l_)> p— + 20— ar jgoo QU cov(n, — g, n—;, — &-p. (10)

The approximate model (9) consists of three terms, and the mean
price-dividend ratio (10) contains the first two of those terms. The
first term is the price-dividend ratio in a certainty world with constant
dividend growth E(7) and constant discount rate E(g). As the mean
discount rate E(g) approaches the mean dividend growth rate E(n),
Q approaches 1, so this constant term (and the other terms as well)
diverges to infinity. This behavior is not an artifact of the approxi-
mation: the exact present-value model [Equations (7) and (8)] also
diverges to infinity when E(g) — E(n).6

The second term in (9) and (10) adjusts the mean price-dividend
ratio for the covariance of dividend growth with discount rates. This
term generates cross-sectional risk premiums, just as the covariance
with the market drives cross-sectional risk premiums in the CAPM. If
the dividend growth of one of two otherwise identical assets has
greater covariance with the discount rate, that asset will have a lower
price-dividend ratio and hence a higher average return. More pre-
cisely, the weighted sum of covariances, or the covariance between
long-run or low-frequency movements in dividend growth and dis-
count rates, drives cross-sectional risk premiums in price-dividend
ratios.’

The third term on the right-hand side of (9) captures variation in
price-dividend ratios over time due to changing forecasts of dividend
growth and discount rates. The price-dividend ratio rises above its

¢ See Appendix C. This observation motivated the Taylor expansion about £(g) and E(n), rather than
some other value of gand 7. With any of the latter, the exact and approximate present-value models
would have diverged to infinity at different values.

7 We have

1 w
o Z; Qi cov(n, — g, n—; — 8-p)
Jo—w

= var(E Q/n,_,) + var(z Qfg,_,> - ZCOV(E Qin,_, /Zo ng,_,>.

J=0 J=0

These terms are also the spectral and cross-spectral densities in a window near frequency zero.
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mean if dividend growth rates are forecast to rise, or if discount rates
are forecast to fall. Since the sums start at j = 1, only predictable
changes in the discount rate and dividend growth rate can explain
variation in the price-dividend ratio: if the discount rate and dividend
growth rate are variable but unforecastable, the price-dividend ratio
should be a constant. Also, it has seemed puzzling to some authors
that stock and bond prices do not move together, but (9) shows that
changing expectations of future discount rates can induce changes
in the price-dividend ratio, with no change in current bond prices,
interest rates, or expected returns.

The approximate model (9) does not capture changes in the con-
ditional covariance of dividend growth and discount rates, or com-
binations of time-series and cross-sectional variation. This desirable
feature requires a third-order expansion, which proved algebraically
intractable. As a result, the model has only a limited ability to capture
time-varying risk premiums.

Since for any X, var(E (X)) = var(X), (9) implies the variance
bound

var(—g) =< _(—I—Tl—ﬂ)—z var(é (A, — §,+j)), (11)

in analogy to (2). Taking the variance inside the sum, we obtain the
variance bound in terms of second moments:

p Q2 < ,
var(l—)) < Toa o j;}m Qi cov(n, — g, n_; — &), (12)
in analogy to (3).

The variance bound (12) is a function of a weighted sum of covari-
ances. This observation explains why variance bounds have been so
sensitive to detrending methods. If discount rates are constant and
log dividend levels are stationary, then the variance of long-moving
averages of log dividend growth (their spectral density at low fre-
quencies) tends to 0. In this case, the weighted moving average on
the right-hand side of the variance bound (12) is close to 0, practically
by construction.

The empirical work checks the implications of the mean and vari-
ance equations fogetber. Since the variance and covariance term is
the same in the mean price-dividend ratio (10) and variance bound
(12), we can substitute out that term, so the content of the pair (10)
and (12) can be summarized by the mean price-dividend ratio (10)

together with
p 2Q p Q
— ] < =) - -
var<D> =T 92(E(D) T Q) (13)
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This is a variance bound that holds for arbitrary discount rates.
Premultiplying (9) by P,/D, — E(P/D) and taking expectations yield
the variance decomposition, in analogy to (4) and (5),

P '
var(l—)> T Q 2 chov( , n,+j)

1 P,
+ ) 2 Q/ cov<D g,+,> (14)

j=1

This equation decomposes the variance of the price-dividend ratio
into terms that reflect changing forecasts of future dividend growth
and changing forecasts of future discount rates, using the price-div-
idend ratio as the forecasting variable. It is not an orthogonal decom-
position, so terms less than 0 percent and greater than 100 percent
are possible. High price-dividend ratios may be associated with low
future dividend growth if they are also associated with much lower
future discount rates.

Note that we can write the sums of covariances in (14) as

2 Q!cov< x,ﬂ) cov( E Q x,+]>, x=mnorg

D, j=1

The rlght-hand expression is the numerator of a regression coefficient
of long-horizon movements in x, on price-dividend ratios. Since Q =
1, the facts we document about price—dividend ratios’ ability to fore-
cast a geometrically weighted sum of x’s can generally be interpreted
in terms of their ability to forecast the usual truncated but unweighted
long-horizon sums, as in Fama and French (1988). Thus, we can
understand (14) as a restriction between the variance of price—divi-
dend ratios and the strength of price-dividend ratio-based forecasts
of dividend growth and discount rates.®

3. Discount Rates

3.1 Discount-rate models
I consider the following models for the discount rate g,.

(i) Discount rate = a constant. 1 include this model because it is
widely tested in the volatility test literature, and it helps to understand

% An alternate way of expressing (14) is 1 = 8, — B,, where 8, is the regression coefficient in

o
> Un,, =a+ ,3,,— + error,
Jj=1

and similarly for 8,.
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how the more plausible models work. The constant discount rate
model predicts no risk premiums—expected returns on all assets are
the same.

(ii) Discount rate = reference return plus risk premium. There is
a long tradition in the volatility test and investment or capital-bud-
geting literature that measures time-varying discount rates from inter-
est rates plus risk premiums that are constant over time. To capture
this idea, we can model discount rates as a reference return r? (a
constant value, or data on an interest rate) plus an unobserved i.i.d.
(not necessarily mean 0) random variable «,,

g&=r)te, (15)

where cov(z,_,, ¢) = 0 for any z,_,.

With this model, discount rates in the variance decomposition (14)
can be measured, since cov(P,/D, g.,) = cov(P,/D, r%)). The ¢,
term in (15) generates cross-sectional risk premiums: the mean price-
dividend ratio of otherwise identical assets varies as the correlation
of their dividend growth with e, varies.

(iii) Consumption-based discount rates. With constant relative risk
aversion, time-separable utility,

o oo }_a _ 1
E(Z p’u(cf)> = E(E p'cl—>,
t=0 t=0 - a
the discount rate is
&= —lnpu’(c)/u'(c,_)] = —In(p) + a In(c/c,.,). (16)

(iv) Discount rate = return. As discussed in Section 1, we can test
for bubbles by using returns in the place of discount rates, since 1 =
E.(R7\R.,). Taking logs, this discount rate model is just g, = 7.
Imposing the transversality condition, the model ‘“‘discount rate =
return” is vacuous, so it can also be interpreted as a measure of the
accuracy of the approximate present-value equation (9).

3.2 Bounds on the mean discount rate

Even if we treat discount rates as unobservable, the mean discount
rate is not a totally free parameter. It must satisfy three lower bounds.
These bounds are important, since each of the statistics (10), (12)
and (13), and (14) are sensitive functions of the assumed mean dis-
count rate, through Q. They are reported in the graphs of the results
that follow.?

® The bounds are estimated with relatively large standard errors. Few of the point estimates are more
than two standard errors above zero, and all are less than two standard errors above 4 percent.
Thus, the data are consistent with a wide variety of mean discount rates.
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First, the mean discount rate must be greater than the mean divi-
dend growth rate of every asset or portfolio, or the present value is
infinite. Thus, E(g) > E(n). Second, the variance terms in the mean
price-dividend ratio equation (10) must be positive. Hence, the mean
price—dividend ratio can be no lower than /(1 — Q). Solving for
E(g) gives

_ ey — 1 EE/D)_
E(Q) = E(@umn = E(n) ‘“<1 T E(P/m)'

Third, the mean discount rate must be greater than the mean log
return on any asset or portfolio of assets. To see this, start with the
Euler equation (6). With = In(R) and g = In(y),

1= E(yR) = E(e¢78) = f~9,
Taking logs, E(g) = E(7).

. Variance Bounds

The data are based on the value-weighted and equally weighted NYSE
portfolios maintained by the Center for Research in Security Prices
(CRSP). The sample consists of annual data from 1926 to 1988. The
data are described in detail in Appendix F.

4.1 Constant discount rate

The mean price-dividend ratio (10) and variance bound (12) cal-
culated with constant discount rates are presented in Figure 1. Both
decline as the discount rate rises, mostly because of the leading term
in Q.

Variance bounds tests typically pick a value for the (constant) dis-
count rate and check whether the variance bound is satisfied at that
value. Figure 1 shows that this procedure will not lead to a violation
of the variance bound in the value-weighted portfolio so long as the
chosen discount rate is less than about 6 percent.

To test the mean price-dividend ratio equation (10) and the vari-
ance bound (12) together (still assuming constant discount rates),
we can solve (10) for the mean discount rate. This value is marked
“var(g) = 0” in Figure 1 and the following graphs. Then, we verify
that the variance bound is satisfied at that value. (The same result for
the equally weighted portfolio is discussed below.)

4.2 Unobserved discount rates

The variance bound with no restrictions on discount rates [Equation
(13)] is presented in Figure 2. The variance bound (13) of Figure 2
risesas a function of the mean discount rate, where the variance bound
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Figure 1

Mean price-dividend ratio and variance bound with constant discount rates, value-weighted
NYSE

The dashed curve marked “E(P/D)” reports the predicted mean price-dividend ratio with constant
discount rates,

P Q Q i
—_—] = — —— 1A N
E(D) 1-e'2a- 9)2,259 covirm, s, 10
where @ = e#"~## 7 is the log of real dividend growth, and E(g) is the assumed constant discount
rate given on the horizontal axis. For comparison, the dashed horizontal line marked “Sample E(P/
D)” reports the sample mean price-dividend ratio.
The solid curve marked *S.d.(P/D)" reports the variance bound with constant discount rates,
P 92 15 1/2
-_— =l V] .
SD<D> = [(1 a2, Peovn "'*’)] a2

For comparison, the solid horizontal line marked “Sample S.d.(P/D)"” gives the sample standard
deviation of the price-dividend ratio.

The vertical line labeled “E(7n)” marks the discount rate equal to mean dividend growth. The
vertical line labeled “var(g) = 0" marks the constant discount rate at which the predicted mean
price-dividend ratio equals its sample value. Since the variance bound is greater than the sample
variance at this mean discount rate, the variance bound and mean price-dividend ratio together
do not reject the constant-discount-rate model. Data are annual, 1926-1988.

with constant discount rates in Figure 1 fell. This feature is due to
the fact that the mean price-dividend ratio equation (10) is always
implicitly satisfied in using the bound (13). For example, consider
the leftmost point of Figure 2. Here, the mean discount rate is E(g) yn,
at which E(P/d) = Q/(1 — Q). For the mean price-dividend ratio
equation (10) to be satisfied here, we must implicitly assume that the
discount rate equals the dividend growth rate, so that the term in
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covariances on the right-hand side of (10) is zero. But this means the
covariance term on the right-hand side of the variance bound (12) is
also zero, which is why the variance bound (13) graphed in Figure
2 is zero. Similarly, to satisfy (10) at high mean discount rates, one
must assume that unobserved discount rates generate a large covari-
ance term, and this raises the variance bounds (12) and (13).

Thus, there is always a region of mean discount rates near E(g) i
in which the point estimate of the variance bound (13) is violated.
However, even where the point estimate of (13) is below the point
estimate of the variance of the price-dividend ratio, it is never even
one standard error below, so we do not reject the present-value model
for any value of the mean discount rate at which it can be constructed
[above E(gQ)min]-

The bound with no restrictions on discount rates is the same as the
bound with constant discount rate at the mean discount rate marked
“var(g) = 0,” since that discount rate solves (10). The sample variance
is below the bound at “var(g) = 0” in Figure 2, so the variance bound
does not reject the constant-discount-rate model for either portfolio.

4.3 Discount rate models
One might suppose that the variance bound with any time-varying
discount-rate model is automatically satisfied because the variance
bound with constant discount rates is satisfied. This is not true. The
variance bound with time-varying discount rates can be lower than
the variance bound with constant discount rates. If the discount-rate
process is positively correlated with dividend growth, it lowers the
covariance terms in (12) relative to their value with constant discount
rates. If discount rates equal dividend growth rates (log utility, con-
sumption = dividend), then the variance bound with time-varying
discount rates is zero.

However, a discount-rate model can only restrict the variance bound
and mean price-dividend ratio together if it restricts the mean dis-

—

Figure 2
Variance bound with no restrictions on discount rates
The “variance bound” gives the right-hand side of

P 2Q 4 Q
Véll‘(B) =< - 92<E<5> - m), (13)

where Q@ = 5”52, 5 is the log of dividend growth, and E(g) is the assumed.mean discount rate
given on the horizontal axis. The +1 standard error lines show standard errors for (var(P/D) —
bound). The “Sample var(P/D)” line gives the sample variance of the price-dividend ratio.

The vertical line labeled * E(g) ,,”’ marks the minimum value of the mean discount rate consistent
with the mean price-dividend ratio [i.e., where E(P/D) = Q/(1 — Q)). The vertical line labeled
“var(g) = 0" marks the discount rate at which the predicted mean price-dividend ratio equals its
sample value with constant discount rates. Data are annual, 1926-1988.
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Table 1
Variance bound and mean price-dividend ratio with discount rate = return
Value-weighted NYSE Equally weighted NYSE
Vari- Vari-
Vari- ance Vari- ance
Mean ance bound Mean ance bound
Sample 23.09 34.02 25.96 57.01
Standard error 1.71 7.75 1.96 15.80
Model 22.56 49.73 27.81 106.76
Standard error 1.52 31.42 4.03 96.06
Standard error
(sampleless model) 2.13 4.77

“sample” gives the sample mean and variance of the price-dividend ratio, annual data 1926-1988.
The “model,” “mean,” and “bound” give

P Q Q <
E\=|=———to— 2 (= 8o My~ &), 10
(D) 1-92 20 —9)2,_2,5 cov(m, = gn iy = 8- (10)
P o 15 )
()= w2, e - 60 a2

respectively, where g is the log of return, 7 is the log of dividend growth, and @ = exp(E(n) —
E(g)). The estimated covariances also include a Bartlett weighting to ensure that their sum is
positive. All standard errors contain a Hansen (1982) /Newey-West (1987) correction, as detailed
in Appendix G. Data are annual, 1926-1988.

count rate, since only the mean discount rate enters (13). For exam-
ple, the constant-discount-rate model had one free parameter, E(g),
which was estimated by (10) as the value marked “‘var(g) = 0.” The
constant-risk-premium and interest-rate-plus-constant-risk-premium
discount-rate models leave more than one free parameter, so these
discount-rate models do not restrict the variance bound beyond the
values presented above with no assumptions on discount rates.

Calculations of the variance bound (12) and the mean price-div-
idend ratio (10) with discount rate = return are presented in Table
1. The predicted mean price-dividend ratios [the right-hand side of
(10)] differ from sample means by about one standard error of the
sample mean. The variance bounds [the right-hand side of (12)] are
well above the sample variance in both cases. Thus, there is no indi-
cation of either bubbles or serious defects of the approximate model.

In Table 2, variance bounds are presented using consumption-
based discount rates. Since there are two free parameters, the variance
bound is presented for a variety of assumed subjective discount factors
p. For each p, I calculated a risk-aversion parameter a to solve the
mean price-dividend equation (10). Then, I estimated the variance
bound (12) or (13) at the mean discount rate corresponding to the
assumed p and the estimated «. In all cases, the point estimate of the
variance bound is substantially greater than the sample variance of
the price-dividend ratio.

The feature that drives this result is the low correlation of long-
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Table 2
Variance bound using consumption-based discount rates
Value-weighted NYSE Equally weighted NYSE
Mean Mean
Utility discount Utility discount
parameters rate Variance bound parameters rate Variance bound
p a E(g (%) Bound SE p a E(g (%) Bound SE
.99 4.28 6.50 84.76 10.55 .99 8.71 12.21 174.22 5.49
97 2.32 6.03 53.13 10.84 97 6.43 11.32 167.30 7.58
.95 0.60 5.90 41.50 10.95 .95 4.20 10.54 149.71 9.71
[Sample var(P/D) = 34.02] [Sample var(P/D) = 57.01]

Discount rates are generated by the consumption-based model:

&= —In(p) + aln(c/c,.).
For a given choice of p, a is calculated to satisfy the mean price-dividend ratio
P Q Q -
E\=)|=T——+—"—7——— Qu ¢~ 8 My ™ 8i-g)» 10
(D) 1-9 2(1—9)2,.2,5 covim = g 7y = &) 0

where 7 is the log dividend growth and @ = e#"~##_ The variance bound is then calculated by

P 92 15
var<5) =< mjz QA cov(n, — g, n—, — &-)). (12)

=15

[Equivalently, the mean discount rate E(g) is calculated and used in the variance bound (13).] All
standard errors contain a Hansen (1982)/Newey-West (1987) correction, as detailed in Appendix
G. Data are annual, 1926-1988.

run (low-frequency) movements in consumption growth and dividend
growth. If they were highly and positively correlated, the covariance
term on the right-hand side of (10) would have been small, so I
would have estimated an « that implied a low mean discount rate to
satisfy the mean price-dividend ratio (10). In turn, that low mean
discount rate would have implied a violation of the variance bound

(13).

Variance Decomposition

The fraction of the variance of price-dividend ratios accounted for
by dividend growth, interest rates, and returns, as a function of the
assumed mean discount rate, E(g), is presented in Figure 3.

The stylized fact that drives the results is the size of price-dividend
ratio forecasts of long-horizon dividend growth and discount-rate
measures. For example, if a rise in price-dividend ratios forecast a
large rise in future dividend growth, then the “fraction due to divi-
dend growth” will be high.

5.1 Unobserved discount rates

With no assumptions about discount rates, all we can do is calculate
the fraction of the variance of the price-dividend ratio due to dividend
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Variance of Price-Dividend Ratios

growth, and infer the fraction that must be attributed to unobserved
discount rates. Thus, examine the lines marked “dividends’ and “100%
— dividends” in Figure 3.

For the equally weighted (EW) price-dividend ratio, a rise in the
price-dividend ratio forecasts a rise in dividend growth, as we expect.
However, the value-weighted (VW) price—dividend ratio actually fore-
casts a decline in real dividend growth. Thus, real dividend growth
accounts for a negative fraction of the variance of the VW price-
dividend ratio, and discount-rate changes must account for more than
100 percent.

As the mean discount rate E(g) declines, @ approaches 1, so the
terms of the variance decomposition diverge to infinity. Thus, so long
asarise in the price-dividend ratio forecasts arise in dividend growth,
there is some mean discount rate at which dividend growth accounts
for allthe variance of the price-dividend ratio (there is a point where
the “dividends” line crosses the 100 percent reference line, and the
“100% — dividends” line crosses zero). For the EW portfolio, this is
at about E(g) = 6.5%. For larger values of the mean discount rate,
increasing fractions of the variance of price-dividend ratios must be
attributed to changing discount rates—the “100% — dividends” line
rises. In particular, the largest lower bound on mean discount rates
is the mean return E(7); at this mean discount rate only 30 percent
of the variance of the price-dividend ratio is accounted for by divi-
dend growth. The remaining 70 percent must be due to changing
forecasts of discount rates.

The relatively large standard errors in Figure 3 are also noteworthy.
Price-dividend ratios only forecast small movements in dividend

—

Figure 3

Variance decomposition

Each curve shows the percent of the variance of the price-dividend ratio attributed to dividend
growth or a discount rate series. For a given mean discount rate E(g), these are calculated by

P 1 5 P, P\]™'
% var<5> =100 x P [E Q/cov(E’, x,ﬂ)}[var(B)]

[see Equation (14)], where @ = e#”-#9", 5 js the log of dividend growth, and x is the dividend
growth, Treasury-bill returns, corporate bond returns, or stock returns, as indicated. The dashed
curve reports the same calculation with x = inflation.

The curve labeled “100% — dividends” reports 100% — the percent of the variance of the price-
dividend ratio attributed to dividend growth. The discount rate curves should intersect the “100%
— dividends” curve at the true mean discount rate.

The horizontal dashed lines indicate 0 percent and 100 percent for reference. The error bars
report selected one standard error intervals.

“E(n)” marks the mean discount rate equal to the mean dividend growth rate. “E(g),,,” marks
the minimum value of the mean discount rate consistent with the mean price-dividend ratio [the
value of E(g) at which E(P/D) = Q/(1 — @)]. “var(g) = 0” marks the constant discount rate at
which the predicted mean price-dividend ratio equals its sample value with constant discount
rates. “E(r)” marks the mean log return. Data are annual, 1926-1988.
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growth rates. On the other hand, only small forecasts are required:
dividend growth and discount rate forecasts on the order of one
standard error higher than the point estimates in more than 60 years
of data would be sufficient to explain the variance of price-dividend
ratios at relatively high mean discount rates.™

5.2 Discount-rate models

Constant discount rate. With a constant discount rate, the mean
price-dividend ratio equation (10) can be solved for a unique value
of the discount rate, marked ““var(g) = 0” in Figure 3. If the constant-
discount-rate model is correct, dividend growth should account for
100 percent of the variance of the price-dividend ratio at this discount
rate—the “dividends” line should intersect the 100 percent reference
line and the “100% — dividends” line should intersect zero at the
mean discount rate ‘“‘var(g) = 0.”

Dividend growth accounts for a negative fraction of the variance
of the VW price-dividend ratio at the “var(g) = 0” mean discount
rate. Thus, the variance decomposition rejects the constant-discount-
rate model for the VW portfolio.!! Dividend growth accounts for about
30 percent of the variance of the EW price-dividend ratio at the
“var(g) = 0” mean discount rate. This fraction is less than two standard
errors from 0 percent and 100 percent. Thus, the constant-discount-
rate model is not statistically rejected for the EW portfolio, but neither
is the view that dividend growth accounts for 0 percent of the variance
of the EW price-dividend ratio.*?

o In deriving Figure 3, I used real dividend growth and discount rates. However, price-dividend
ratios should not forecast inflation, so it should not matter whether we use real or nominal dividend
growth and discount rates. However, price-dividend ratios do forecast inflation, so there is a
significant difference between nominal and real results.

Included in Figure 3 is the weighted sum of covariances of the price-dividend ratio with sub-
sequent inflation. To obtain the fraction of the variance of the price-dividend ratio explained by
nominal dividend growth, add the inflation line to the real dividend growth line in Figure 3; to
obtain the fraction explained by a nominal interest rate, subtract the inflation line from the real
interest rate lines. (The sum of the two fractions is unchanged; the use of nominal data just shifts
the covariance with inflation from the discount rate to the dividend growth term.)

Since both price-dividend ratios forecast rises in inflation, the fraction of the variance accounted
for by nominal dividend growth is higher than for real dividend growth, and is positive in both
cases. The mean discount rates at which 100 percent of the variance is accounted for by dividends
is then higher, E(g) = 2 percent and 7.5 percent for the VW and EW portfolios, respectively.

' This calculation assumes that the mean discount rate inferred from the mean price-dividend ratio
is perfectly measured. Standard errors calculated including the estimation of mean discount rates
are not much different.

2 Nominal dividend growth accounts for less than 10 percent of the variance of the VW price-dividend
ratio at “var(g) = 0,” which is positive but more than two standard errors from 100 percent. It
accounts for 50 percent of the variance of the EW price-dividend ratio, which is still less than two
standard errors from 0 and 100 percent. Thus, the results are the same with real and nominal
dividend growth.
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Discount rate equals constant plus risk premium. With this model,
the mean price-dividend ratio equation (10) only provides a lower
bound E(g) = E(g) i, rather than identifying the mean discount rate.
Lower mean discount rates can increase the fraction of the variance
of price-dividend ratios attributed to dividend growth. However, the
bounds of E(g) ., are not enough lower than the “var(g) = 0” points
(see Figure 3) to substantially change the estimates and standard
errors. Furthermore, the lower bound E(g) > E(r) is higher than
E(8) min, and dividend growth accounts for an even smaller fraction
of the variance of the price-dividend ratio at mean discount rates
E(g) > E(r).

Thus, the constant-risk-premium model does little better than the
constant-discount-rate model: some time variation in discount rates
is required to explain the variance of price-dividend ratios.

Discount rate equals interest rate plus risk premium. With these
discount-rate models, the covariances of the price—dividend ratio with
future discount rates are equal to the covariances of the price—divi-
dend ratio with future interest rates. However, these models do not
identify the mean discount rate. Thus, if these models work, the “‘t-
bill”” or “corp. bond” lines should intersect the “100% — dividends”
line in Figure 3, at some mean discount rate above the lower bounds
E(8) min and E(r).

All the interest rates account for a positive fraction of the variance
for the EW portfolio; the corporate bond rate does so for the VW
portfolio (Figure 3). However, the fraction of the variance of the
price-dividend ratio accounted for by these interest rates is well
below the required amount (the interest rate lines are well below
the “100% — dividends” lines) at mean discount rates above the
discount rate bounds. A rise in the price-dividend ratio forecasts a
decline in these interest rates, but the decline is too small. The
forecasts are also statistically insignificant: the interest rate lines are
less than one standard error above 0 in Figure 3.3

Discount rate equals return. This model works beautifully. At the
mean discount rate equal to mean return, marked “E(7)” in Figure
3, dividend growth and discount rates together account for almost
exactly 100 percent of the variance of the price—dividend ratio (the
“100% — dividends” line intersects the “‘stock return” line).

'* The contribution of nominal interest rates is the real interest rate line less the inflation line in
Figure 3. Since all the interest rate lines lie below the inflation lines, all nominal interest rates
contribute negative fractions of the variance of price-dividend ratios. A rise in the price-dividend
ratio forecasts a rise in inflation that is larger than the decline in real interest rates, so it forecasts
a rise in nominal interest rates.
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Table 3
Variance decomposition with discount rate = return

Percent of variance explained by

Real Nominal
divi- Real divi- Nominal
Portfolio dends return dends return Total
Value-weighted NYSE % var (P/D) —34.62 137.79 8.38 94.79 103.17
Standard error 10.00 31.72 1891 19.77
Equally weighted NYSE % var (P/D) 30.41 84.93 59.74 55.60 115.33

Standard error 41.34 18.89 41.04 16.85

The table entries are terms of (14),

1 [& P, P\l
100m|:]=2l Q’COV(EII, x/+j)][var (B)] )

where x is the dividend growth (#) and x is minus the return (r), respectively, and @ =
efm-£» Al standard errors contain a Hansen (1982)/Newey-West (1987) correction, as detailed
in Appendix G. Data are annual, 1926-1988.

The variance decomposition with discount rate = return is also
presented in Table 3. It shows that, in fact, slightly more than 100
percent of the variance of the price-dividend ratios is accounted for,
verifying the approximation and rejecting bubbles. However, the vari-
ance of price-dividend ratios is largely due to changing forecasts of
returns rather than to changing forecasts of dividend growth. Since
the mean discount rate must be at least as large as the mean return,
the bulk of the variance of price-dividend ratios will have to be
explained by discount-rate movement with any discount-rate model.

The stylized fact behind this result is that price-dividend ratio
forecasts of real and nominal returns are large and negative, confirm-
ing Fama and French (1988). Even when price-dividend ratios fore-
cast that interest rates and dividend growth rates move in the right
direction, the magnitudes of the forecasts are much smaller than the
magnitude of the forecast change in returns.

Consumption-based discount rates. The variance decomposition
using consumption-based discount rates is presented in Table 4.

Asbefore, the mean price-dividend ratio equation (10) can be used
to infer one parameter of the utility function, so I estimated the risk-
aversion coefficient & by imposing the mean price-dividend ratio
equation (10) for various assumed values of the subjective discount
factor p. All the consumption-based discount rate contributions to the
variance of price—dividend ratios are negative, and many are more
than two standard deviations below 0.

A high price-dividend ratio forecasts higher long-run consumption
growth. It should forecast lower consumption growth: any wealth
effects of a stock price rise should be incorporated into consumption
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Table 4
Variance decomposition using consumption-based discount rates

Variance decomposition

Mean
Utility discount % var(P/D) due to SE
parameters rate Dividend Discount Dividend Discount
p a E(g) (%) growth rates Total growth rates
1. Value-weighted NYSE
.99 4.28 6.50 —31.34 —26.08 —57.42 9.17 26.02
97 2.32 6.03 —35.56 —15.75 —51.31 10.23 15.97
95 0.60 5.90 -36.92 —4.19 —41.11 10.58 4.27
2. Equally weighted NYSE
99 8.71 12.21 14.62 —12.63 1.99 22.08 22.67
97 6.43 11.32 17.70 —9.87 7.83 25.92 19.92
95 4.20 10.54 21.30 —6.78 14.52 30.34 15.44

Discount rates are generated by the consumption-based model:
&= —In(p) + aln(c/c,.)).
For a given choice of p, « is calculated to satisfy the mean price-dividend ratio equation

P Q Q <
El=)=——=+——3 vicovin, - g, n._, - g.), 10
<D> T—a a - &, v n T g e m ) (10

where 7 is the log of real dividend growth and @ = e*"~#. The variance decomposition gives the
percent of the variance of the price-dividend ratio due to dividends and discount rates, from (14):

1 [& (P P\
100m[§ ﬂ/cov(a, x,+,)] [var (B)] ,

where x is the dividend growth 7 and discount rates g as indicated. All standard errors contain a
Hansen (1982)/Newey-West (1987) correction, as detailed in Appendix G. Data are annual, 1926-
1988.

immediately, and then consumption growtb should be lower, as dis-
count rates should be lower.

Bounds on the Mean and Standard Deviation of Discount
Rates

So far, we have found that there exist unobserved discount-rate pro-
cesses that explain the variance of price-dividend ratios, but the
observable discount-rate proxies (other than the trivial case of the
return itself) do not satisfy the variance decomposition. Are the unob-
served discount rates that one must invoke to satisfy the mean price—
dividend ratio, variance bound, and variance decomposition “rea-
sonable,” or must they have unusual time-series processes suggestive
of “fads”? To address this equation, this section computes the min-
imum standard deviation of discount rates required to satisfy the mean
price—dividend ratio, the variance bound, and the variance decom-
position.

' The choice of mean and variance rather than other moments more appropriate to nonnormal
variables is arbitrary. It reflects a tradition in the discount-rate-puzzle literature rather than any
deep observations about the importance of variances over other moments.
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w

The problem is to find the discount-rate process with minimum
variance for a given mean discount rate, subject to the constraints
that the mean price-dividend ratio (10), the variance bound (12) or
(13), and/or variance decomposition (14) are satisfied. The solution
to this problem is a discount-rate process that is a singular function
of dividend growth and the price-dividend ratio:

g* =a(l)n, + B(L)(P/D). an

[a(Z) and B(L) may be two-sided.] Adding a noise term to (17) just
adds variance without helping to satisfy the constraints. The problem
is then to find the forms of (L) and B(L) that minimize the variance
of g, subject to the constraints. The solution is straightforward but
algebraically unpleasant, and so is presented in Appendix E. The
results are presented in Figure 4.

First, examine the bound on the standard deviation of discount
rates that satisfy the mean price-dividend ratio (10), marked “E(P/
D)” in Figure 4. This bound has a global minimum of 0 at the mean
discount rate that solves (10) [marked “var(g) = 0” in previous graphs].
As explained in conjunction with the variance bound in Figure 2, the
discount rate must have higher variance for both larger and smaller
mean discount rates to keep the mean price—dividend ratio prediction
(10) satisfied. This bound rises to infinity at the mean discount rate
E(g) min, since no lower discount rate is consistent with the mean
price-dividend ratio equation.

Next, examine the bound on the standard deviation of discount
rates that satisfy the variance decomposition (14). This bound basi-
cally rises with the mean discount rate, as the fraction of the variance
of the price-dividend ratio attributed to dividend growth declines
(see Figure 3). For the EW portfolio, there is a global minimum
standard deviation of 0, at the mean discount rate where real dividend
growth accounts for 100 percent of the variance of the price—dividend
ratio.

—

Figure 4

B ds on the standard deviation of discount rates that satisfy the mean price-dividend
ratio and variance decomposition relation of discount rates that attain the bounds,
and mean and standard deviation of consumption-based discount rates

The bounds marked “E(P/D),” “Var(P/D),” and “Both” give the minimum standard deviation of
discount rates that satisfy the mean price-dividend ratio equation (10), the variance decomposition
(14), and (10) and (14) together, respectively, using real dividend growth. The error bars report
selected standard errors of the “Both” bound. The top part of each graph reports the autocorrelation
of the discount rate processes that attain each bound. The line marked “a = 0,” ..., “a = 5"
reports the mean and standard deviation of consumption-based discount rates,

&= —In(p) + aln(c/c,..1),

using subjective discount factor p = .96 and the indicated risk aversion a. Data are annual, 1926-
1988.
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The variance bound (12) is an inequality constraint and so only
adds the information that the mean discount rate must be greater
than the value at which the variance bound is just satisfied (see Figure
2). This value is very close to E(g)m, at which the mean price-
dividend bound [“E(P/D)” in Figure 4] diverges to infinity, and so
is not separately reported in Figure 4.

The minimum values of the bounds on the standard deviation of
discount rates implied by the mean price-dividend ratio, variance
bound, and variance decomposition separately (as they are usually
analyzed) are all equal to—or very near—0. However, the minimum
value of the bound (“Both”) that imposes all these conditions simul-
taneously is positive. For the value-weighted portfolio, a standard
deviation of roughly 5 percent is required at a mean discount rate of
about 7 percent, while for the equally weighted portfolio, a standard
deviation of roughly 10 percent is required at a mean discount rate
of 11 percent. The minimum standard deviations are about two stan-
dard errors above zero.

Are these discount rates ‘“‘reasonable”? To get some idea, the mean
and standard deviation of consumption-based discount rates are also
presented in Figure 4. The utility parameters are a subjective discount
factor p = .96 and a variety of risk-aversion coefficients below 7. Chang-
ing the subjective discount factor p simply shifts the curve to the left
or right. As the figure shows, the consumption-based discount rates
have means and standard deviations in the required regions with a
range of “‘reasonable” parameters: risk-aversion coefficients of 5 are
sufficient. (The comparison with consumption-based discount rates
is not a test of the consumption-based model, as that model fails to
generate moments other than mean and variance correctly. Figure 3
and Table 4 showed that forecasts of consumption growth from price—
dividend ratios had the wrong sign.)

By contrast, the simplest similar bounds constructed by Hansen
and Jagannathan (1991) for discount factors that generate the uncon-
ditional equity premium require risk-aversion coefficients over 40,
and their bounds on discount factors that generate the unconditional
term premium require risk-aversion coefficients in the hundreds. Thus,
the minimum standard deviation of discount rates required to explain
the variance of price-dividend ratios is an order of magnitude lower
than that required to explain unconditional return premiums.

The required discount rates have some other unusual characteris-
tics. Figure 4 shows the first-order autocorrelation coefficients of the
discount-rate processes on the standard-deviation bound. For most
mean discount rates, this autocorrelation is very near 1. The variance-
minimizing discount rates are also highly predictable from past price—
dividend ratios and discount rates. Consumption growth is nearly
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unpredictable both from its own past and past price—dividend ratios
or dividend growth. (However, the mean, standard deviation, auto-
correlation, and predictability are consistent with marginal rates of
transformation implied by standard intertemporal production func-
tions [see Cochrane (1991a)].)

In summary, the unobserved discount rates we must invoke to
explain the variance of price-dividend ratios are “reasonable” from
the usual criterion of their standard deviation, but are quite unlike
consumption-based discount rates in their autocorrelation and pre-
dictability.

Concluding Remarks

In this article, I examine a variance bound and a variance decom-
position for price-dividend ratios. I try to answer three questions with
each test: (1) Is there any discount rate process that is consistent
with the variance of price-dividend ratios, or is its variance an indi-
cation of “bubbles”? (2) Are there reasonable unobserved discount
rate processes that explain the variance of price-dividend ratios? (3)
Do particular discount rate models account for the variance of price—
dividend ratios? The tests are derived with an approximate present-
value model that extends the specification of similar models in the
literature. In particular, it captures the importance of the mean dis-
count rate to the volatility of stock prices, it allows us to use infor-
mation about the mean as well as the variance of the price-dividend
ratio, and it can generate cross-sectional risk premiums because of
varying low-frequency correlations of dividend growth with the dis-
count rate.

The variance bound is easily satisfied for all discount-rate models.
The central ingredient in this result is the choice of units: price—
dividend ratios and dividend growth rates. Most variance bounds in
the literature that use these units do not reject, even with more restric-
tive specifications. The extensions pursued here—serial correlation
in dividend growth, time-varying discount rates, varying mean dis-
count rates, and checking the implications of the mean price—divi-
dend ratio—could have big effects, but turn out not to.

The variance decomposition yields mixed results. The variance of
the price-dividend ratio is entirely accounted for by forecasts of div-
idend growth together with returns, so there is no indication of bub-
bles or serious shortcomings of the modeling approximations. How-
ever, changing return forecasts account for the bulk of the variance
of price-dividend ratios, so most of that variance must be chalked up
to discount-rate movements. But the discount-rate models—interest
rate plus risk premium, and consumption based—fail.
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Two observations are crucial to this result. First, a rise in price—
dividend ratios forecasts a large decline in returns, but its forecasts
of dividend growth, interest rates, and consumption growth rates are
typically smaller, less statistically significant, and not always of the
“right”” sign."> This fact by itself need not be a problem for the variance
decomposition, as we might just invoke a low mean discount rate.
However, the second observation is that the mean price-dividend
ratio equation must also be satisfied. This observation rules out the
mean discount rates for which dividend growth, alone or together
with interest rate proxies for discount rates, can account for the vari-
ance of the price-dividend ratio.

The consumption-based model also fails miserably. A rise in the
price-dividend ratio forecasts a long-term rise in consumption growth,
rather than a decline as it should. This is a different problem than
the low contemporaneous correlation of returns and consumption
growth documented by Euler equation rejections.

Mean-standard deviation frontiers for unobserved discount rates
that satisfy the variance bound, variance decomposition, and mean
price-dividend ratio are calculated, to see if these discount rates are
“reasonable” or suggestive of ‘“fads.” Here again, it is important to
use the information in the mean price—dividend ratio as well as the
variance bound or decomposition. Constant discount rates could sat-
isfy the mean, variance bound, and variance decomposition sepa-
rately, but not togetber. The discount rates required to explain the
mean price-dividend ratio and the bounds have standard deviations
that seem “‘reasonable,” but they are more predictable and autocor-
related than consumption growth rates.

In summary, discount-rate processes exist that explain the variance
of price-dividend ratios. But none of the discount-rate models con-
sidered here (except the trivial model “‘discount rate = return’’) are
forecastable enough from price-dividend ratios to explain the vari-
ance of price-dividend ratios.

In the end, these tests of the present-value relation look much like
tests of Euler equations: there are no striking rejections as in the
original articles by LeRoy and Porter (1981) and Shiller (1981), and
there is no requirement for outrageous discount-rate behavior. How-
ever, existing discount-rate models are rejected. The remaining dif-
ficulty is the same—namely, to find successful and nontrivial measures
of discount rates, such as measures of marginal rates of substitution
or transformation.

It might be possible to raise the dividend forecast by using earnings measures. If firms smooth
earnings to dividends, then a rise in price-dividend ratios may forecast a large change in earnings
a few years out, but the corresponding rise in dividends may not occur inside the 15-year limit I
used for dividend growth forecasts.
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Appendix A: List of Symbols
The symbols used in this article are

P, = stock price (claim to dividends from ¢ + 1 forward);
dividends in period ¢

n, = dividend growth, n,= D,/D,_,;

n, = log dividend growth, n,= In(n,);

R, = gross rate of return, R=(P + D)/P,_,;
r, = ln(Rr)3

v. = discount factor, e.g., 1 = E,_,(v,R);

g = discount rate, &= —In(y,y;

p = subjective discount factor in utility;

a = coefficient of risk aversion, u'(c) = c
Q = eE(n)—E(g)'

L
II

E(Q) min denotes the minimum value of E(g) consistent with the
mean price-dividend ratio equation (10):

E(@min = E(n) — In[E(P/D)/(1 + E(P/D))].

var(g) = 0 denotes the E(g) at which the mean price—dividend
ratio equation (10) holds with a constant discount rate.

Appendix B: Stationarity of the Price-Dividend Ratio
in the Exact Present-Value Model

Equation (8) is consistent with the assumption that price-dividend
ratios, dividend growth, and discount rates are all stationary. It would
be nice to show that stationary dividend growth and discount rates
imply a stationary price-dividend ratio.

A strongly stationary dividend growth and discount rate imply a
strongly stationary price—dividend ratio, if the expected value of the
sum converges almost surely. £(g) > E(n) is necessary and sufficient
for the sumto converge a.s. Precisely, if v,and 5, are strongly stationary
and positive a.s., then one can show that the weak law of large num-
bers implies

lim 2 H (YrseMise) < 0 as.

T—oo j=1 k=1
if and only if E(g) > E(n). However, E(g) > E(n) is not sufficient
for the expected value of the sum to converge a.s. For example,
suppose w, = 7, — g is lognormally distributed. Then, E(exp(w)) =
exp(E(w) + 3 var(w)) SO

E(-gf-) = E(i exp w,+,e) 2 exp(;E(w) + —var(i w,+,e)>‘
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Now,

j
lim ivar(E w,+,e> = 5,(0),

j=o ] k=1

where §,(0) denotes the spectral density of w at frequency 0. Thus,
the expected price-dividend ratio (or the price-dividend ratio itself
if the moments above are conditional on time ¢ information) is finite
if and only if E(w) + §,(0) < 0, which is more stringent than E(w)
< 0. Furthermore, establishing strong stationarity does not establish
the existence of second moments for weak stationarity, which is the
basis of the usual linear time-series methods.

Lacking both necessary and sufficient auxiliary conditions [such as
E(g) > E(n)] for dividend growth and discount-rate stationarity to
imply a stationary price-dividend ratio, the logic of the text is to
assume that the price-dividend ratio, dividend growth, and discount
rates are all stationary with first and second moments, and to point
out that this is consistent with the present-value formula [Equations
(7) and (8)].

Appendix C: Derivation of the Approximate

Present-Value Model

Start from the exact present-value model (8). Multiply both sides by
any variable Z, observed at time ¢and take expectations, yielding

0 j
E(Z,-&) = E[Z, 2 (exp 2 W,y k>],
D, Jj=1 k=1

where w, = n, — g. Construct a second-order Taylor expansion of the
expression in the brackets, with respect to w,.,, j = 1,2,...,, and Z,
about their means E(w) and E(Z). With &, = w, — E(w), that Taylor
expansion is

7 Z[oo(2 )

ZQ Z, (o
= + 2<wa,+j>

1-Q 1-Q

Jj=1

1 E(Z) <
21 — Q = |: ( Wh;+ 2 2 Q* wt+jwl+j+le>]

where Q = ef®) = gEW—#g, Taklng expectations,

E(Z'_g) B E(Z’)<1 - 2 " 2a . Q) 3 2 covtu, w"f))

j=—oo

1 < e
J .
+ = QE(Z,;1 Q w,+,>.
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Since this equation holds for all variables Z, known at time t it is
equivalent to

P, Q Q -

Do + 1 ,
D 1-9 20- 9)2,»2,0 (@4 cov(w,, w,-)]

1 e
+ - QE,(E wa,+,>.

J=1

Substituting w, = »n, — g, yields Equation (9) in the text.

Appendix D: Accuracy of Approximation

The mean price-dividend ratio, variance bound, and total of the vari-
ance decomposition with discount rate equal to return, presented in
the text, provide measures of the accuracy of approximation. As another
measure, this appendix examines the accuracy of the Taylor approx-
imation as applied to the ex post price—dividend ratio with discount
rates equal to returns, that is, the quality of the approximation:

b, P 1 .. N
—=El—=)+ J = Py
D, (D) 1-0 E V(Brrs = Fa), (D1)
where
P Q Q -
E\—=|)= + 14 — - ).
(D) et —ap, 2 Yot g n ~ 8)

The model (7) and (8) holds exactly, ex post (i.e., dropping the E,)
with returns in the place of discount rates. Thus, the only reason the
calculation of (D1) differs from the exact price—dividend ratio is the
accuracy of the approximation, together with the fact that the sums
are only taken to the terminal date (1988) rather than to infinity. A
calculation of (D1), together with the actual price-dividend ratio, is
presented in Figure 5.

For comparison, the Campbell-Shiller (1988) approximation to the
price-dividend ratio, again using ex post returns to discount divi-
dends, is also presented in Figure 5. Campbell and Shiller start with
the identity

1=R:\Ry1.
This identity implies

_Q = R{;%%(ﬁ + 1)_
D, D, \D,4,

Take logs of the last equation, Taylor approximate the log of the term
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Figure 5

Accuracy of approximation

The line marked P/ D" gives the price-dividend ratio of the value-weighted NYSE. The line marked
“Approximate P/D" gives the approximate ex post present value:

P, _ p U S oun
B(approxnmate) =E3)* T ,2.; Qi Py = Fonp)s
EE—L+—SZ——§Q'/'COV(n—rn )
D/ 1-a 20-9*5 ro e T e

where T = 1988. (The graph is essentially the same if one uses the sample mean price-dividend
ratio in place of the predicted value from the covariances of dividend growth less return.) The
line marked “Campbell-Shiller” gives the equivalent Campbell-Shiller approximation:

P, ) T—t Qr-+ k
E(Campbell—shlller) = exp(-[; QN = ) + T Q<E(”) - E(r)> T1- 9])‘

k= (- Q)l;ll(l - Q) + 2In(Q).

in parentheses, and iterate forward on the log price-dividend ratio
to obtain

D, <
In{=| = 2 P (Fyy — Ad,.;) —
P, i

where

k= —[(1 — pIn(1 — p) + pIn(p)]

and p is an arbitrary constant determined by the point at which the
Taylor approximation is taken. In arriving at Figure 5, I used
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p= Q = eE(") - E(n)’

following Campbell and Shiller. As Figure 5 shows, the approximation
used in this article and the Campbell-Shiller approximation perform
about equally in this test. Of course, the real test is how well the two
models perform with the “true” discount-rate model rather than ex
post returns. Also, my approximation was designed to endogenously
generate risk premiums, which have to be added to the Campbell-
Shiller approximation through an expected-return model.

Appendix E: Finding the Mean-Standard Deviation
Frontier for Discount Rates

The problem is to minimize var(g,), subject to the mean (10) and
variance decomposition (14). Using Z, = P,/ D, in the right-hand side
of (14), the constraints (10) and (14) can be rewritten as

P Q \201-9°2 - _
<E<E) 1 9) - 0T Var(z Ve g'“))’

=1

oo P oo
COV<Z,, E Qin,, ,) -1-Q cov(Z, B) =X,= Cov(Z,, E Qig,, ]-> .

j=1 j=1

The problem is most easily solved in the frequency domain,

min 1 f Sg(w) dw
™ Jo

subject to
O )
X, = —f | b(e*) |28, —g(w) dw
™ Jo
and
l w
XZ = a 0 Sz,h(L)g(w) 6&0,
where
b(L) = D, QL
j=1
SO
ey Qe*
b(e*) 1= ge

S.(w), and S, ,(w) denote spectral and cross-spectral densities, respec-
tively.
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The variance-minimizing process is singular, that is, there are an
« and B such that g = a(L)n, + B(L)z,. With this form for the g
process, and using Sy, = h(e*)S,,, the problem becomes

mm—f dw |a|?S, + |B8]%S, + aB*S,. + a*BSE (E1)
{af) T

subject to
%= Mo 1501 - a4 181 - 0 - @S,
- (1 — O)*SL),
=5 fo " do (hasS,, + bra*SE) + (W + b*BH)S,,
where the (e—*) notation is suppressed following «, 8, b, and the
spectral densities.

This is a frequency-by-frequency Langrangian maximization. The
first-order conditions yield

8, | b|? o,h*

T 1 ¥6,h7 B=ca+eim’

where 8, and 8, are Lagrange multipliers on the two constraints. Sub-
stituting into (E1), the minimum variance of discount rates is

I O (P V) SO PPTPRPP g
var(g,) —WJ; dw a+ 61|b|z)2<61|h| S, + 452
6,0,
- ——(bS,,Z-i- h*s¥) ), (E2)

where the constraints 8, and 8, are found from the constraint equa-
tions

(1 +6,1h1%)?

_ b2 xgry _
f do T3 T\ 8BS + S%) = 5,5, ). (E4)

1 L h 2 62 6
X, = _f m-—'-'——(sn+f|h|25,+§(bsn,+ h*S;’;)), (E3)

The second constraint can be solved for 6, as a function of 6;:

| b|?
5, =|2rx fdw 5,(hS,. + h*SE
("2 1+5|b|2(""

LA
(f R AT > ' (E5)
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To calculate the minimum standard deviation of discount rates for
a given mean discount rate, 1 followed this procedure: (1) I con-
structed the spectral densities S,, S,, S, using the first 15 covariances,
weighted as in Newey and West (1987) to ensure that the spectral
density matrix is positive definite; (2) I used (E5) to substitute for 6,
in (E3), and then searched for a value of é, that satisfies (E3), per-
forming the integrals numerically; (3) with the resulting values of &,
and §,, I evaluated (E2) to give the minimum variance of discount
rates.

The case 6, = 0, which corresponds to the same minimization impos-
ing only the variance decomposition, yields a natural interpretation
as a regression of discount rates on a variable observed at time ¢ In
this case, the minimum variance reduces to

var( )=lf1rdw§|b|25
gf T 0 4 F2)

with

1 ™
X, = ——f dw 6,| h|2S,.
27 0

Solving the constraint for é, and substituting in the variance, we obtain

var(g,

)
- lblzs,<—xz[1 [ |b|zsz] )

™ Jo ™ Jo
= (COV(Z,, i Qin,, j> - 1-9 cov(Z, g)) [Vm‘(i QfZ,_j>]
= <cov<g,, i QfZ,_j>[var(i QfZ,_J)] > wr(i Yz, j).

This is the variance of the fitted value of the regression of g on
2%, WZ,_, Thus, the minimum variance of discount rates compatible
with the variance decomposition only can also be found by inferring
the OLS regression coefficient of discount rates g, on the variable
22, WZ,_,. Also, this calculation shows that the variance-minimizing
discount rates are thus one-step-ahead predictable from past Z,.

Appendix F: Data Description

The Treasury bill, government bond index, corporate bond index,
and CPI are from the Ibbotson-Sinquefield database. The real per
capita consumption series is the same as in Campbell and Shiller
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(1988), extended to 1988 with NIPA real per capita nondurable and
services consumption growth.

Price-dividend ratio and dividend growth data are based on the
CRSP value-weighted and equally weighted NYSE portfolio returns,
with and without dividends, converted to annual frequencies to avoid
the seasonal in dividends. (The model can apply to monthly data,
but the approximation would be worse with big seasonals in dividend
growth.) Precisely, the dividend-price ratio and dividend growth are
formed from the CRSP annualized total (R7) and price-only (R¢)
annualized gross returns as follows:

_ (R —R9) _ (P, +D P )P,_l
Pt—l Pt—l Pt

’

(F1)
D_, PD_,P.

where P, is the December 31, year ¢t — 1 closing price. One can show

that this construction means that annual dividends in year ¢ are the

monthly dividends, brought forward from the end of the month in

which they are paid to December 31 at the total monthly return R".

Appendix G: Standard Errors

Organize the data into a vector y,, whose mean gives the means,
variances, and covariances of price-dividend ratios, dividend growth,
and discount rates:

=(n g P/D % §? (P/D,) Afl_y RA_, -]
E(y,) =[E(n) E(g) E(P/D) var(n) var(g) var(P/D) cov(n, n_,) -]
—_

All the statistics of the article can be expressed as differentiable func-
tions f(u), which are estimated by using sample moments u,in place
of the population moment u. Assuming the variables in y, are sta-
tionary (and other regularity conditions), Hansen (1982, 1985) shows
that

T2 flur) — flw))

converges in distribution to a normally distributed random vector
with mean 0 and covariance matrix Vf(u)’V,Vf(n), where

—im S (1= el v - _
Vo=1lim X, (1 E\(y, — Wy, —n)’
IR j==y J

I calculated Vf analytically where possible, and otherwise as the
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numerical derivative of the procedures that calculate test statistics as
a function of sample moments. J = 5 is used throughout the tables.
(I did some experiments and found little difference in standard errors
with more than J = 5 covariances.)
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