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1 Introduction

Production possibilities in uncertain environments are usually modeled by
standard (certainty) production functions augmented with shocks, for exam-
ple,

y = ef{k) (1)
where y = output (tomorrow}, k£ = input (today), and ¢ = the shock (revealed
tomorrow). The firm’s choice variable is the input k.

This paper explores a different representation for technology under un-
certainty. There are two equivalent ways to think about this representation.
First, the firm is also given choice of the distribution of the shock variable ¢,
which is constrained to lie in a convex set. For example, the constraint could
be that the second moment of ¢ must be below some value.

Second, consider the production possibility set induced by a production
function of the form (1). The firm can only transform inputs today to outputs
tomorrow in fixed proportions across states. The firm cannot transform
output across states of nature, so the production possibility set has a kink,
as illustrated in Figure 1. I study production sets whose borders are instead
smooth (differentiable), as illustrated in Figure 2.
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Figure 1: Standard production possibility set in a two state world. The
technology is y(s) = €(s)kV/2, y(0) = W — k.
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Figure 2: Smooth production possibility set. The firm can to change the
distribution of output - the pattern of y(1) vs. y(2).

Why is this representation of production possibilities reasonable? First,
one may simply argue that the lack of kinks is the most natural production
set, and ask what empirical evidence there is for them, as we do when study-
ing nonstochastic production functions. It seems natural to start with the
presumption that the firm has at least some control over the distribution of
outputs conditional on inputs, and ask for compelling evidence that it has
absolutely none. Historically, aggregate production functions with kinks are
not the result of such evidence. Instead, shocks were simply tacked on to de-
terministic intertemporal production functions familiar from growth theory.

Second, smooth production sets can occur when one aggregates standard
production functions. Section 2 explores a model in which a firm has access
to several different technologies or processes, each of which has a different
distribution of shocks. By varying its input across the different processes,
the firm can change the distribution of the shock in the aggregate production
function that relates the firm’s total output to its total inputs.

This approach is analogous to the standard result that an aggregate of
Leontief production functions can produce a smooth function such as Cobb-
Douglas. In fact, the latter result is a standard justification for smooth input
requirement sets given that individual machines or production processes are
generally fixed-coefficient. I apply the same logic to the multiple outputs



(across states of nature) of a firm that operates in an uncertain environment.

One response to this observation is to inveigh against the use of aggre-
gated data. However, this is not practical advice. National, category and
industry level aggregates are a useful and informative source of data. Fluc-
tuations of these aggregates and their correlation with asset returns define
the empirical phenomena that we want to explain. And perfectly disaggre-
gated data are unlikely to ever be available. Even at the plant level, the firm
can choose what kinds of machines to install, the nature and durability of
construction materials, etc. All data are somewhat aggregated.

Why is this representation of technology useful or interesting? My direct
interest is in the construction of production-based asset pricing models, with
the following motivation.

A large empirical literature has uncovered a tantalizing list of correla-
tions between macroeconomic data and asset returns. For example, many
of the same variables forecast stock and bond returns as well as GNP, such
as the term premium and default premium. Stock returns forecast GNP.
Regressions of stock returns on leads and lags of GNP can yield R? more
than 50%. Ad-hoc macroeconomic factors can do a good job of explaining
the cross-section of stock returns.

To make sense of this empirical work, we need economic models that tie
asset returns to macroeconomic variables. Yet economic modeling of the
link between aggregate consumption and asset returns has not been a great
empirical success. Current research in this area features transactions costs,
liquidity constraints, lumpy goods purchases, uninsured individual income
risk and other heterogeneities. This research seems likely to produce a solid
understanding of why there is no useful link between aggregate consumption
and asset returns, rather than to produce a successful specification relating
available consumption data to asset returns. Since general equilibrium mod-
els with production require a correctly specified consumption side, they do
not avoid this empirical difficulty.

In this context, production based models try to exploit relations between



production variables and asset returns derived from the maximizing behavior
of firms. The hope is that they will allow us to describe the links between as-
set returns and macroeconomic aggregates, even while the consumption side
of the problem is poorly understood. {Cochrane (1991, 1992) contain detailed
motivations for this approach with reference to puzzles in the empirical asset
pricing literature.)

When studying the consumption side of the problem, the condition that
a contingent claim hyperplane is tangent to an indifference set leads to the
familiar relation

asset price = £ (ﬁwpayoff) : (2)
uw(ce)

Figure 1 makes clear why a pure production-based asset pricing model is not

possible using standard representations of technology. Since there is a kink

in the production set, many different contingent claim price hyperplanes are

consistent with any point the firm might choose.

Thus, my motivation for studying production sets that are smooth across
states as well as dates is that they allow one to describe the link between
production variables and asset returns with no information about preferences,
just as the consumption model describes a link between asset returns and
consumption that is independent of the production technology. However, this
representation of technology should also be useful in many other applications.

1.1 Overview of the paper

Section 2 explores a simple model in which a smooth production set is derived
from underlying fixed-shock technologies. Section 3 motivates the form of the
production functions I use throughout this paper. I add choice of the shock
¢ and the constraint

E[(;) )<L

to standard intertemporal technologies such as (1). (4 is an underlying pro-
ductivity shock that may make it easier to produce in some states than in
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others.) Then, section 3 derives the first order conditions of firms with these
production functions. The conditions say two things. First, the firm removes
arbitrage opportunities between the one period return on investment, de-
noted R/, and asset returns. Second, they imply formulas for the marginal
rate of transformation as a function of output, capital, etc.

The paper includes three sets of calculations. Section 4 calculates the
effects of smooth technologies on simple standard stochastic growth models.
Section 5 constructs Mehra-Prescott style economies in which consumption
is a fixed stochastic process and we read asset returns from marginal rates of
transformation. This model is a laboratory for thinking about what features
of production technology will be useful for matching stylized facts about
asset returns and macroeconomic variables. Section 6 estimates and tests
a production - based asset pricing model, i.e.,, 1 = E(mR) where m is the
marginal rate of transformation implied by the model (a function of output,
investment, labor, etc. data) and R is a set of asset and investment returns.

2 A simple aggregation model.

The approach in this paper is to model the aggregated (smooth) production
possibility set directly, rather than derive the structure of these sets from
(unobservable) primitives. However, it is useful as motivation to sketch a
model in which a smooth aggregated production set is derived from under-
lying traditional technologies.

Consider a two-state world, in which the firm has two technologies. For
example, think of a farmer who can plant in two fields. One field does well
in wet weather, the other in dry weather. The farmer can then shape the
risk exposure of his tofal output to weather by varying the amount planted
in each of the the two fields.

To make this story precise in a parametric example, let the technologies
of field i be
¥i(3) L &(8)k!; s=horl; i =1or2



Total output is
y(s) = y1(s) + ya(s)
and total inputs are constrained by initial capital less initial sales,

ki +ky = k= W — y(0).

We only observe the aggregates: k, W, y(0) and y(s). Thus, we ask what this
structure implies for the aggregate production possibilities set, {y(k), y(!), —k}.
The answer is straightforward given this functional form. First, write the
technology in matrix form,

P =Tam @ K]
y = Fk.

Next, Iassume that the matrix of shocks F is invertible. Otherwise, there
really is only one technology at work. Then, we can find the pattern of inputs
required to get a given state-pattern of outputs,

k= (E7y)'m.
Finally, the first period resource constraint implies

k=1k> 1V(E™y)V",

Thus, we have the production set
{(y,—k) such that 0 > V'(E™'y)? — k}.

Figure 3 graphs this production set. As the figure shows, though the in-
dividual production technologies have kinks or fixed shocks, the aggregate
technology is smooth.!

!The derivation ignored the possibility of creating a {y(h), y(1}} by disposal from a
larger output. The latter possibility expands the production set to fill the solid lines in
figure 3.
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Figure 3: Aggregate production set {y(k),y(!), —k} induced by two standard
technologies, y,(3) < e(s)k], : =1,2.

For continuous-state economies, we subdivide technology into finer units
of analysis; each square foot of land may have a slightly different sensitivity to
weather. Thus, consider individual technologies indexed by z (co-ordinates,
in our farm example). Indexing states of nature by w, we write aggregate
output as

yiw) = / dz e(w, 2) f(k(2)).

If we can invert this relation to
f(k(z) = [ aPrtw) Mo 2lyiw)

then the firm can rearrange its output to attain any random variable.?

If the number of states is greater than the number of technologies, or if
the shock distribution is not invertible, the firm may still be able to rearrange
its output among a restricted set of random variables, and thus we may be
able to price interesting subsets of all contingent claims. The appendix takes
this issue up in detail.

2 Alternatively, we can derive smooth produciion sets by allowing the firm to contin-
uously vaty its investment in a few technologies, as in the dynamic spanning literature
{Duffie and Huang (198x)).



It is likely that marginal rates of transformation do not in fact exist to
price every random variable, for example pure preference shocks or sunspots.
Rather than model this fact directly, however, it is easier to write production
functions that are completely smooth, and make sure we price assets whose
payoffs are plausibly related to technology.

3 Production functions

The individual technologies f(k(z)) are not observable to economists, who
must always study some level of aggregation. Therefore, instead of building
up a lot of machinery about production functions f(k(z)) and variation in the
distribution of shocks ¢(w, z), I simply posit aggregate, smooth, production
sets with convenient functional forms.

3.1 Functional forms in two-period models.

Consider a two period world with S states of nature at the second date. The
firm’s output is y(s), its input is k. At a general level, we seek functions.

g(y(s), k) : RS 5 R

that are monotone and convex, g(-) > 0 for {y, —z} feasible, g(-) < 0 for
{y, —z} not feasible and g differentiable. The appendix describes features of
production sets that imply such a function.

Separability across time and states makes the functions much more trac-
table. Perhaps the most natural approach, given the analogy to consumption-
based models, is then to write the production function as

B Zp(s)g(c(s)) + g(¢(0)) € W, g(-) monotone, convex

where ¢(3) represents net outputs sold by the firm in state s, and ¢(0) de-
notes net outputs at time zero. (c is not necessarily nondurable consumption
goods.) p(s) is a probability measure.
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However, it seems useful instead to incorporate standard production the-
ory as far as possible. To that end, I specify a traditional-looking production
function to describe the firm’s ability to transform goods over time, but add
the ability to substitute across states.

An obvious such choice is
S (a(shy(s)*) > < f(k) (3)

a > 1, f(-) monotone, concave

In a continuocus state space, this choice is

( ] M (w)y(w)*)H < F(R).

Here, a or dM is a measure, not necessarily a (or the) probability measure.
The expected utility axioms do not apply to firms, so probabilities do not
enter into technology as they do into preferences. There is no obvious reason
why the firm’s technical ability to transform output into a state of nature
should have anything to do with the probability that the state occurs.®

However, since it is very convenient to use a probability measure when
integrating across a measure space, we can introduce the R — /N derivative
and express the same production function as

f dPr(w)(y(w)/8(w))*) < (k)

or

E((y/0)")"/* < f(k). (4)

Finally, it will be convenient to think of the technology as a standard
intertemporal technology augmented with choice of the shock. Thus, we can

30ne could think of dynamic models in which the firm expends R& D efforts to make
it easier to transform output to states with high probabilities, reflected in high contingent
claims prices.



write (4) as
y = ef(k)
E((e/6)7) < 1.

a controls the firm’s ability to transform output across states. As a — o0,
the chosen shock € converges to §. The choice € = 8 is always feasible, and
as « decreases, it becomes ecasier for the firm to transform output across
states. Thus, we can think of 4 as the underlying productivity shock, which
the firm distorts to some new shock €. As an example, consider a = 2 and

# = constant. Then the firm can choose any technology shock whose second
moment is less than 62, including € = .

3.2 First order conditions in a two-period model.

The firm’s objective is to maximize contingent claim value,
max E(my) — k
subject to
y = ef(k)
E[(e/6)°] < 1.

m is the stochastic discount factor, or contingent claim price divided by
probability.* The firm can choose k and the value of ¢ in each state of
nature.

The first-order conditions are
0/0k : E(mef'(k)) =1 (5)
a-=-1
3/0e:  mf(k)=da (6)

€
po
*This way of writing the objective does not require the existence of complete markets. A
discount factor exists assuming only absence of arbitrage. Thus, this objective expresses
the notion that firms remove arbitrage opportunities between physical investment and
what assets are available, by synthesizing assets through marginal changes in output across
states of nature.
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and the constraints. Equation (5) is the familiar condition that the dis-
counted vaiue of the produce accruing to an additional unit of investment
should equal its marginal cost. It can be written 1 = E{mR’) where R is
the investment return, R’ = f'(k).

To remove the Lagrange multiplier A in (6), multiply (6) by ¢ and take
expectations to obtain

E{mef(k)) = Aa.

Using (5),
Aa = f—(if-)—
frik)
Then, (6} yields
S Oe) )

This second condition describes the firm’s choice of shock. As expected, the
firm chooses a higher shock € in states with higher contingent claim price or
discount factor. For example, consider a = 2 and § = constant. The firm will
not necessarily choose ¢ = 8§ with no variance. Contingent claims to some
states may be so attractive that the firm is willing to shift some output to
those states, even though this lowers mean output and raises its variance. A
higher § makes it easier to produce in a given state, and so corresponds to a
lower contingent claim price.

As with the consumption first order condition, we can use (7) to infer
what the discount factor must be, given observations of the productivity
shock ¢. Since any asset or claim to payoff z is a bundle of contingent claims,
we can write its price p = E{mz). Thus, we may write the asset pricing
implications of this model as

€ 1
= E| (7)==
== (G 7m7)
Note that in general, the discount factor is not the inverse investment return

ef'(k).
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3.3 Multiperiod production functions and first-order conditions.

Again, the most natural approach might be to write a production function
that represents a general ability to transform across all states and dates, such
as

Y8 alshgle(sh)) < W

However, it again seems more fruitful to maintain as much of the structure
of standard production functions as possible. To this end, I add the above
specification for the choice of shocks to standard intertemporal technologies.

I start with a simple technology, which I will use in studying stochastic
growth models in section 4 and a Mehra-Prescott style model in section 3.
The following section adds an adjustment cost. This feature is required to
get the variation in investment returns to be anything like the variation in
stock returns. I use the model with adjustment costs to specify and test an
asset pricing model in section 6.

3.3.1 Multiple period model without adjustment costs.

The production function 1s
ye = ef (ki)
ke = (1 = 8)ke + 4,
E:((ft+1/8t+l)a) <1

The firm'’s objective is

oo i
max E Z (H m¢+k) (Yers — etj)

Analogously to (5} and (7), the first order conditions can be summarized
by
1= Eifmug(€snf' (k) + (1 = 6))) (8)

12



and

a=1) s pa
el )
Mipy = t+1 / (a ) (9)

filkeer) + (1= 8)Exleryy '/6°)

Equation (8) is the usual condition that the investment return should be
correctly priced,

1 = E(mR],,); Ri,, = e (k) + (1 = 6),

This condition occurs whether or not the firm can choose the shock e. Equa-
tion (9) describes the choice of shock ¢ from the equality of marginal rates
of transformation and discount factors.

3.3.2 Derivation of the first-order conditions

To derive first order conditions, it is useful to state the problem recursively:

Vik,e) = ma.xef(k) — i+ E(mV(k' ¢))
s.t.
E=(1-68k+1,
Ei((€/6)%) =

The first order conditions are

afoi: 1=Xx
8fak . E(mVi (K ,)) =X\
8/ :  mV,(F,€) = had"1/g°
Envelope: Vi =ef' (k) + A\ (1 —§)
V. = F(k)

and constraints. Substituting for A\, and Vi, we obtain

8k : 1 = Em(¢f'(K) + (1 - 6))}.

13



Substituting for V,» multiplying 3/0¢ by ¢ and taking expectations,
Eu(me)f(K) = MaEi(€%/67) = Asar.
Substituting for A; in @/0¢’ and canceling,
m = E,(me )¢V /9>.
To eliminate E;{rne’), use the 3/3%" condition,
1 = Ey(me) f/(K) + (1 = 8)Ex(m)

1 —(1 = $8)Ei(m)

Et(mer) = f,(k,)

Thus, .t)
1= (1= 8)E(m) el
e T R (o)

Taking expectations and solving,

_ Et(ef(a—l)/gﬂ)
Eim) = k) + (1 = 6)E(ela-11/ga)

Finally, (10) yields

3 6!(0—1)/91::
= ff(k!) + (1 — §)E:(€'(a-l)/gﬂ)'

(11)

m

3.3.3 First-order conditions with adjustment costs and variable
labor

The firm’s problem is now

oo J
max E Z (H mH-k) (yH-Ji - z.H-;i - wt+_?‘lg+j)

=1 \k=1

s.t.
= ftk;qul_ﬂ - ‘J’(in kt) (12)

14



ke = (1 = 6)(2¢ + ke)
Et+1 \a -
[(9:+1) ]

v(1, k) is the adjustment cost.

The first order conditions, derived in the appendix, now imply
1= Et(mt+lRtI+l)s

where
L+ eepinkin bt + %ilierr kenr) — lieer, k)
1+ 7i(ih k:) ’

Rt-l-l =(1-46) (13)

A discount factor m#* for excess returns satisfies
0= E}(m * R¢)

This discount factor is simple to derive from the first order conditions, since
time ¢ variables including the Lagrange multiplier on the technology shock
constraint can be divided into the 0 on the left hand side. One such discount
factor is®

]

mE = — (14)

The actual discount factor is somewhat more complicated, since one has
to keep the time ¢ variables straight. It is

(knil )1"" ‘:';11
_ 1 “I-l-l egu.'.} (15)
m= (1 —_ 6) + E (kgt] )1 n :-}1 (1+’Tu£‘t+l|kt+l)“7k(“t+lpkti-ll)

K L A I+yi(ie ke)

SFormula (14) also works if the shock ¢ multiplies the adjustment cost as well, i.e. if

W= €& (k?“gl-v - ‘Y(in kr)) .

However, in this case m itself cannot be derived in closed form, since we cannot solve for
the Lagrange rnultiplier on the shock choice constraint.

15



As with habit-persistence models, a conditional expectation appears non-
linearly in the formula for the stochastic discount factor. To find moment
conditions that do not depend on agents’ information sets, we can start with
pr = Ey(mis12441), multiply both sides by the denominator of m,,, and take
unconditional expectations, to obtain

k o—1 s _ .
£ <(1 — ) [77 +( f::-ll)l—ﬂ €141 (1 + Yi(tes1, ke ) 7k(zt+1,kt+1))] P:) _

9?+1 1 +'Ti(fts k)
brpn el
—E ((ﬂ) fet1 Im) .
41 654

I use the following functional form for the adjustment cost function:

. B.1i..
By = 22
(i, k) = S(2) (16)
With this functional form, the production function (12) implies

_Eymdyimn B
=[N - 5] (1)

Which now defines mx in terms of observables, up to the shock 8, which is
discussed below. The investment return (13) becomes

L+ eppa[n( Byt 4 g(gery — Btz
t41 t41 t+1 18
1+ eB(L)) (18)

R, =(1-6)

4 Effect of technology shock choice on a stochastic
growth model

In this section, I examine the effect of allowing choice of technology shock on
a standard stochastic growth model.

Giving firms choice over technology shocks per se results in no extra
implications. We can always specify the shock choice set so that firms would

16



State State
2 2
N A
. \\ ~
State State 1
Fixed coeflicients Choice of shock

Figure 4: Firms can be hypothesized to choose any given distribution of
shocks.

have chosen a given distribution of shocks. Figure 4 illustrates. Analogously,
there is a production economy that gives the same consumption-asset price
dynamics as any endowment economy and vice-versa.

However, we can ask the following questions. How does giving a firm
choice over the actual technology shock alter the equilibriumn of a model,
holding other aspects of the model constant? In particular, can a firm choose
a production shock that is more volatile than the underlying shock? If so,
we might be able to understand the puzzling volatility of technology shocks
required by real business cycle models as a choice given a set that does not
favor one state much more than another. When will the firm choose a pro-
or counter-cyclical technology shock? Choosing counter-cyclical shocks, in
a sense described below, will be very useful in constructing successful asset
pricing models, and it would be comforting if the result could occur in a
standard general equilibrium model.

17



4.1 Set-up of the model

The planning problem 1s

- ~n
e (5 )

s.t.
Ky =(1-8)K.+ Y, - C,
Y, = ANFK] S
B [(48,,/68) ] <1 (19)
HH-I = ¢'9t + Vigry Vil i.1.d. N(O, 0'3) (20)
N+L=1

The shock is expressed as A% to give a nonstochastic balanced growth
path. I consider four special cases of increasing generality, and concomitant
algebraic complexity. All the algebra is relegated to an appendix.

4.2 Two-period model with fixed labor supply

Restricting the model to two periods and ignoring the labor terms, we can
solve the first-order conditions analytically. It will be convenient in what
follows to examine logs of variables, denoted by lowercase letters.

The constraint that consumption exhaust second period product implies
that consumption follows

civ1 = @ + (1 = )k
The shock a follows

ay+1 = Naebis1 — constant (21)
where !
Nao = 1+ =1 (22)
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Figure 5: How choice of shock ¢ depends on risk aversion +.

When v = 1, equation (21) reduces to @,y = qy. If ¥ > (<) 1, then the
elasticity 7,6 is < (>) 1. Thus, if consumers are less risk-averse than log, the
firm chooses a pattern of technology shocks a that is more volatile than the
underlying shock process 8, and vice-versa. Figure 5 illustrates. Finally, as
a —+ oo, the elasticity 7,9 approaches one, and a = @, for any value of v. As
a — oo, the firm loses its ability to affect the production shock.

4.3 Two period model with variable labor supply

Next, I allow for varying labor supply within the two period model. Unfortu-
nately, closed-form solutions of this model are not available. (Since labor is
1-leisure, the equilibriumn quantities solve equations of the form z = a(b—z)°.)
Instead, I log-linearize the first-order conditions and constraints, to obtain
“srnall deviation” solutions. Letting small case letters denote deviations of
logs from means (i.e. constants suppressed), and with ¢ = 1, the result is

— O (23)

a4

Ctyi ‘fj 41 = ¢ B4 (24)



Liyy = m— At ¢(T =y 0141 (25)
where 6 . N
N -
1+ b=
14+ ¢ ¢ L
Implications

When £ = 0 so production is unaffected by labor, or when 4, = ooc so
consumers are unwilling to vary leisure, 7 = 1, the response of a to 8 reduces
to the value 749 (22) found in the model with no labor. Leisure (25) does not
respond to shocks.

The direction of the response of a to a shock 8 is still governed by risk
aversion 7. From (23), the response of a is greater or less than one as + is less
than or greater than one. Labor has an effect on this relationship through
the parameter 7 which multiplies & in (23). When v > 1, 7 > 1 as well.

Thus, when the firm chooses to attenuate production shocks, (7 > 1) the
presence of labor causes the firm to attenuate less. However, when v < 1,
and the firm chooses to exacerbate production shocks, r can take any value
T < 1, including zero and negative values. Thus, the presence of labor can
dramatically increase the sensitivity of shocks a to 8, and even result in a
negative elasticity, or countercyclical choice of shock.

4.4 Infinite period model with fixed labor supply

Next, consider the infinite period model, but hold labor supply fixed.

An analytic solution exists for the special case of log utility and full
depreciation, vy =1, § =1, f(K) = K", n =1 — £. The consumption and
capital decision rules are well known®

Ce=(1-Bn)ALKY, Kipr = ALK

*Try a value function, V = const. + -5 In(A,K]) and verify that it works.

20



In this case, we find
a=2~0

so the unit elasticity with log utility extends to this infinite-horizon case.

I follow Campbell (1992) in constructing an approximate analytical solu-
tion for other parameter values. Campbell’s solution method log-linearizes
the first-order conditions and constraints around values in a nonstochastic
balanced growth path. The resulting linear system of equations can be solved
analytically.

The first-order conditions and constraints are

C7 = BfBCL Reyr) (26)
BCKNE = A ATV /08, (27)
K =(1-8)K.+ AAK ™ - C, (28)

£ [(45ar05)

Rt+1 = At+1K:+1 + (1 - 5)

where

To obtain a log-linear version of the shock-choice constraint, hypothesize
a solution in which A4y = AO]% as before. If so, Ay is also lognormal.
Then, the shock choice constraint (20) is, in log form

Eaes1) = Ee(Be41). (29)

Log-linearizing the other first order conditions and constraints, we obtain
E(Acit1) = 0rs(Er(as41) — kega) (30}

— Ci31 + 0'(1 - E)ki-}-l = 0'/\g + O'if((l’ - l)a,.,.l - O'Ea0¢+1 (31)
kips = Ak + dzae + Ayc {32)
Ei(ai41) = Ee(8e41) - (33)
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Oipy = 08 + v (34)
where

Hl-{-r
_1_9,

ST-ot+e 0T e

E(r +9) \ £&(r +6)

)\1 )\2 :A4=l_'/\l'_’\2:

r, ¢ = steady state return to capital, growth rate , o = 1/5.

I guess a solution of the form

&G = nckkt + Negde + 77::99: (35)
ary1 = 00+ nap(feyr — 66,). (36)

Substituting this guess into the log-linearized first order conditions and con-
straints, and after some unpleasant algebra, we obtain

gfa — nep
ea + 0€(a — 1)
Mok = 51—4 (_’Ql - \/Q% - 40A3A1/\4)
A2(Nek + 0 A3)
1- /\4('?0& + 0'/\3)
—$(1ce — 0 A3)
(nek +oA3)As+ ¢ —1

Nag =

Nea =

et =

where

Ql = Al -1 +O'A3A4, g = 1/‘}’

To interpret the results, note that the consumption decision rule can also
be written

¢t = Nekke + (Nea + 78 )0e + Nc0(6: — ar).

or, substituting the decision rule for a,

C = qckkt + (T].:a + Tlcﬂ)a: + ﬂcﬂ(l - naﬂ)(at - Et—lgt)-

One can verify that n., + 7. gives the same expression as Campbell’s
expression for 7.,, derived in a model with a = §. Rewriting the decision rule
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this way, the first two terms are unaffected by the choice of shock parameter.
Consumption responds to the difference between 8 and 4, or to the innovation
in #, since 8 rather than a controls expectations of subsequent shocks.

It is also interesting to examine the innovatien in consumption corre-
sponding to an innovation in the underlying shock #. Using a; — E¢_ja; =
Na0(0: — E:_10;), the last equation implies

e — Eii00 = (ﬂca’?aa + 7?(:8)(9! - Et-—let)- (37)

When there is no shock choice, 1,6 = 1 and so disappears from the last
expression.

What The Formulas Say

Four limits of the elasticities are easy to evaluate analytically. First, as
a — 00, N.p — 1. As expected, as the firm loses its ability to choose the
shock a, the choice of a converges to 6.

Second, as ¢ — 0, 5.p — 0. The only reason consumption responds to ¢
is that @ gives information about the choice set from which future technology
shocks a will be drawn. When there is no such information (as in the two-
period model) consumption doesn’t respond to ¢ at all.

Third, as ¥ — 0, 7a¢ — a/(e — 1). This is the same value as in the
two-period model.

Fourth, varying the shock choice parameter a has no effect on the con-
sumption elasticities 7.k, 7. and n.4. Its only effect is on the shock choice
elasticity n,4. As a increases, 7,4 — 1. As a decreases to one, |n.ef — oo

Table 1 evaluates the elasticities 1,9 and 7.4 for the full depreciation case,
§ =1.0. I use ¢ = 0.005, r = 0.015 { = 2/3 as in Campbell (1992).

As in the two-period model, and as expected from the analytical solution
for log utility, v+ = 1 is a dividing line: for ¥ > (<)1, 5. > (<} and
nee < (>)0. However, in the two period model, as v+ — oo, 7,6 — 0; the
chosen shock approached a constant, and there were no negative values. This
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~
¢ | 0 12 1 2 10 o
0 0 0 0 0 0 0
09 t-044 -0.14 0 015 04 0.08
095 |-047 -0.15 0 0.16 046 0.16
1 |-04% -0.16 0 0.18 0.54 0.99
Nad
v
¢ |0 1/2 1T 2 10 o
6 |2 13 1 075 0.36 0
09 {2 13 1 059 -07 -82
09512 13 1 057 -0.87 -16
1 12 13 1 0356 -1.1 -100

Table 1: Elasticities with § = 1, & = 2.

is no longer true; as ¥ — 00, 11,4 becomes a large negative number. The firm
chooses countercyclical shocks. As v — oo, the consumer desires a steady
consumption stream. (As emphasized by Campbell, the model with v = o0
inherits some of the properties of the permanent income model.) A positive
innovation in § means that subsequent shocks will also be higher. To offset
this, the firm chooses a very low realization in a for such states. I verify this
intuition below.

Table 2 presents elasticities for a more realistic depreciation rate § = 0.025
(quarterly). The first thing to notice is that ¥ = 1 is no longer a special
value. The shock elasticity 7,4 is greater than one for all values of ¢, and
the consumption elasticity 5. is zero at a value of risk aversion 4 much less
than one.

Asin the = 1 case, the shock elasticity 7,4 ranges from 2 to -100. Again,
the negative elasticity allows the plan to give the consumer an even smoother
stream than is possible with a fixed technology shock. To investigate this
effect, table 3 presents the response of a consumption innovation to a @
innovation, as defined by equation (37). In the 4 = 0o column, the consumer
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5
0 0.1 0.5 1 2 10 o0

0 0 0 0 0 0 0

09 !-10 -0.44 0.053 .12 0.14 0.12 0.072

0.95|-11 -8.57 0079 0.18 0.22 0.21 0.14
1 |-11 -0.78 0.14 037 053 0.75 0.88

ole

Tag
5
¢ |0 01 05 1 2 10 oo
0 12 2 19 19 18 1.6 0
09 2 2 19 1.7 14 018 -82
09512 2 19 16 1.2 -0.92 -16

1 [2 21 1.8 14 038 -7.2 -100
Table 2: Elasticities with § = 0.025, a = 2.

desires the smoothest possible consumption stream. In the model with no
shock choice, one obtains permanent income-like results. For a transitory
shock (low ¢) consumption has a small positive response. (One can show that
log consumption follows a random walk in this case.) However, when choice
of shock is allowed, the increasingly negative (with @) elasticity 7, allows
the consumer to completely offset the shock, resulting in no consumption
response!

Characterizing the shock process

An equivalent way of characterizing the effect of shock choice 1s to char-
acterize the process for the chosen shock a;. The model with choice is not
observationally distinguishable from a model with no choice whose shock
happened to follow the chosen shock process. From (36), we can write the a

process as
ae =80, + (729 — )1y (38)

0; = $8i-1 + vy
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Shock choice, 1canas + 18

~
Fer 0 0.1 0.5 1 2 10 ')
0 1.8 0.25 .12 0.087 0.062 0.029 0
0.9 |-83 -0.18 017 02 019 012 O
095 -88 -031 02 026 027 019 0
1 1-94 -051 025 043 0534 061 O
No shock choice, ne; + 7
5
¢ 0 0.1 0.5 1 2 10 fe'e!

0 (089 0.13 0.063 0.046 0.034 0.018 0.0088
09 (-92 -031 012 016 017 014 0.08
095|-97 -044 014 023 026 023 0.15

I -10 -065 0.2 041 056 077 0.89

Table 3: Elasticities of consumption innovation w.r.t. # innovation.

or

ac= (1= 6L)™" + (a0 ~ 1)) v

Looking at equation (38), the effect of adding shock choice is to change
the first element of the impulse-response function for the shocks by (7.0 —1).

For example, the strong negative values of (1, — 1) found for high v
in table 2 result in a negative instantaneous response followed by the highly
persistent positive AR(1) response. Roughly speaking, the negative instanta-
neous response makes the present value of the shocks zero, so no consumption
change need take place.

4.5 Infinite-Period model with labor supply

Finally, I add labor supply to the infinite period model. I restrict attention
to log utility, both to keep down the number of parameters and since sepa-
rable labor and leisure and a stationary consumption/wage ratio require log
utility (Campbell (1992), Ogaki and Cooley (199}), King Plosser and Rebelo
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(1988)).
Again, I guess decision rules of the form
Ct = nckkt + Nealt + 7}:9631

a1 = Ei(0i51) + nas(0t41 — Ei(0i41)).

Plugging these guesses into the linearized first order conditions and con-
straints, and after much tedious algebra, we find

e = 7 (-0 - /@ - 10001

(1 + w01+ Aav)ne + As(1 — w(1 — €))]
Tea = Tt = Ag0)[(1+ dav)mox + Xa(l — v(1 = £))] — 1
(L + Aa¥)ea — Aol + €v)
(14 Aav)nee + Az(1 — (L = E))](Ae — Agw) + (1 + Agv) — 1
(1 +&v)ne — L
§v—§(a—1)— (1 - ¢{v)ne

e = _¢

Nag =

where
@2 = (1 + Aaw)(Ag — Aav)
Q1= = 2)(A3(1 —v(1 =) + (1 + Aaw)(M + Av(1 =€) = 1
Qo = A3(1 — v(1 — §)) (A + Aap(1l - §)).
A1, Az, A3, A4 are as given above, o, = 1/, and
(1 - N)on
N+ (=81 - Non

v =

What the formulas mean:

The elasticities reduce to the values given above for the model with fixed
labor supply when +, = 0 and hence v = 0,

Tables 4 -6 evaluate some of these elasticities for a range of values of the
leisure curvature parameter <, and the persistence parameter ¢.

27



i

Y., LeiSura curvat_ra cortorater

Figure 6: Shock elasticity n,s as a function of labor curvature parameter ~,.

a8

In
] 0 01 05 1 2 10 oo
¢

-7 .23 129 36 21 1.9
09 {-11 -16 -93 72 31 19 17
0951-079 -1.2 -79 64 28 18 16

1 [-0.19 -0.44 -46 43 2.1 15 1.4

Table 4: Shock choice elasticity for variable labor model.

As shown in table 4, the shock elasticity 7,4 now can take on a wide
range of positive and negative values. As in the two-period model, there
is an interior singular point. It occurs at 7y, = 0.53. Figure 6 graphs the
shock elasticity as a function of v, to make the behavior clearer. The shock
elasticity is larger for smaller values of persistence ¢.

Tables 5 present consumption elasticities and 6 presents labor supply
elasticities. As with consumption, the addition of a choice of shock allows
labor supply to be constant when v, = co.
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Shock choice, c7a0 + Nes
In
@ 0 0.1 0.5 1 2 i0 00
-0.19  -0.24 -1 0.66 0.23 0.11 0.087
0.9 {0053 0.0075 -0.63 0.68 033 0.22 0.2
095 0.16 0.12 -0.44 0.69 039 028 0.26
1 0.38  0.35 0.0098 0.7 052 045 043
No shock choice, 7 + 70
n
@ 0 0.1 0.5 1 2 10 oo
0 [(0.11 0.1 0.084 0.074 0.064 0.051 0.046
0.9 028 027 024 022 02 017 0.16
0951035 034 031 029 027 024 023
1 0.5 05 048 046 045 042 0.41

=

Table 5. Elasticities of consumption innovation w.r.t. ¢ innovation. Variable

Labor Model.

Shock choice, 7,3%0¢ + Tns
“n
@ 0 01 05 1 2 10 o
0 {-29 -35 -12 64 16 025 0
09 |-23 27 96 5 13 02 O
0
0

09 -2 -24 -83 43 11 0.17
1 |-1.5 -1.7 -52 2.6 0.65 0.099
No shock choice, fns + 7ne
‘Y'ﬂ-
] 0 0.1 0.5 1 2 10 oo
0 1.7 1.5 1 0.71 045 012 0O
0.9 1 1.2 1 073 054 035 0092 0
095|095 085 061 045 03 008 0
1 049 044 032 024 0.16 0046 0

Table 6: Elasticities of labor innovation w.r.t. # innovation.
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5 Considerations in specifying a technology for asset
pricing models

It 15 useful in constructing general equilibrium models or specifying a discount
factor model for asset pricing to consider some qualitative facts that the
model should reproduce.

First, the discount factor must be volatile and correlated with asset re-
turns. From the basic pricing equation for excess returns

0= E(m&) = E(m)E(R) + p(m, R)a(m)o(R°),

we have

m) = - _Elm)_ECE)
plm, Re} o(Re)

The slope of the mean-standard deviation frontier E(R®)/o(R®) is about 0.2
in postwar quarterly data or about 0.4 annually. Thus, even if the discount
factor and returns are perfectly correlated, we need o(m) = 0.2 or 20% (40
% annually). This is a large value compared to the consumption growth,
GNP growth, or even the market return. This requirement can lead to the
implausibly high estimates of risk aversion coefficients. If m and R® are less
than perfectly correlated, even higher variances are required.”

Second, nearly risk-free rates are about 1 — 2%, so the mean discount
factor should be around 0.98 annual or 0.995 quarterly. In the consumption-
based model, risk aversion coefficients that generate adequate o{m) together
with subjective discount factors 3 < 1 imply E(m) around 0.85 and thus risk
free rates around 15% per quarter. This is the "risk-free rate” puzzle.

Third, expected excess returns on stocks are positive. The mean excess
return on stocks is about 7% per year. This fact implies that stock returns

"The requirement for high o(m) is the essence of the Mehra-Prescott {1985) equity
premium puzzle. See Hansen and Jagannathan (1991), Gallant Hansen and Tauchen
{1990) for a more sophisticated version of the calculation. Cochrane and Hansen (1992)
emphasize the puzzle posed by the low correlation of asset returns with consumption
growth.
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must be negatively correlated with the discount factor. From the pricing
equation 0 = E{(mR°) we have

cov(m, R°)

B = = F{m)

Since E(m) > 0, and E(R*) > 0, cov(m, R} < 0.

Fourth, excess returns are procyclical-they are positively correlated with
growth rates of macroeconomic series such as consumption, output, and in-
vestment,

Facts three and four mean that the discount factor is likely to be negatively
correlated with macroeconomic series. For example, the consumption-based
model generates myy; = B(cer/c)™,y > 0, so the discount factor m is
negatively correlated with consumption growth. (Of course, Cov(m, R) < 0,
cov(R,y) > 0 does not imply cov(m,y) < 0. However, it is convenient to
start by thinking in terms of a one-shock model, in which case the sign of
correlation is transitive.)

On the other hand, mean returns on long-term bonds are about the same
as treasury bill returns, even though their standard deviation is almost that
of stock portfolios. Thus, long term bond returns should show very little
correlation with discount factors.

The negative correlation of discount factors and returns, and the negative
correlation of discount factors and macro series are consistent with the stan-
dard real business cycle model model with stable preferences and procyclical
technology shock. Fig. 7 illustrates in a two-state two-date endowment econ-
omy. It shows a higher discount factor (contingent claim price) in the "bust”
state, and hence a negative correlation of the discount factor with consump-
tion. The discount factor will also be negatively correlated with the returns
of assets {such as claims to output or consﬁmption) that pay off well in the
"boom” state.

The pattern of correlations speaks against a view of the world with stable
(state-invariant) technology, in which fluctuations are driven by preferences.
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Figure 7: Negative correlation of returns and discount factor in standard
model.
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Figure 8: Positive correlation of returns and discount factor in simple
production-based model with preference shocks.
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Figure 9: Negative correlation of returns and discount factor in a model with
procyclical technology shocks.

(Stable does not mean "no shocks”, it means that the choice set for shocks
does not favor one state or the other.) For example, suppose the firm can
choose the distribution of the endowment shock as in Fig. 8. In this world,
output is higher in a boom because contingent claims prices are higher in
a boom, not despife the fact that prices are lower in a boom. This mode!
delivers a discount factor pesifively correlated with returns, and thus mean
returns lower than the risk-free rate.

The models below include a variety of features to this end, but we can
illustrate two simple possibilities right away. First, suppose there is an under-
lying productivity shock 8 that is positively correlated with the “preference
shock™. In this case, the discount factor is again negatively correlated with
returns. Fig. 9 illustrates.

Adding labor to the technology aiso helps to overcome the problem. Pro-
cyclical labor can take the place of a procyclical shock 8. For example,
consider a technology defined by

ye = & f(l), E((e/0)%) < 1.
The firm’s production set for output is

E[(W)“] <L
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Figure 10: Negative correlation of returns and discount factor in a model

with procyclical labor shocks.

Then, if labor I, is higher in a boom, we obtain a production-possibility set

such as illustrated in fig. 10.

6 A Mehra-Prescott Style Model
6.1 Specification

The model is specified as follows:

Technology:
yr = &f(k) = a:‘ﬂk:’
Ye=26C + i
kg = (1~ 5)I7t + ¢
-1-7} @
Oei1
Preferences:

Ct Cy1 Ciq2

min(—, = ...

Xt Xi+1 ’ Xt+2

34
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Uncertainty:

Xt = GtX[Shst-l),ét = Gta(shst—l)-
Pr(s’} s) = Prob{syy; = 5" | sy = s).

The tilde notation distinguishes between levels and detrended values of any

variable,
;= i't/Gt.

The technology is a standard fixed-labor technology, with the addition of
the shock-choice possibility. In analogy to the Lucas (1978) - Mehra-Prescott
endowment specification of technology, I regard consumption data as an ex-
pression of Leontief preferences. As with the production side of endowment
economies, this specification is not restrictive. The asset pricing relations
are valid for any preferences, given the technology and equilibrium consump-
tion process. Using an endowment for production or Lenotief preferences
is simply a convenience when one does not want to derive the equilibrium
consumption process from more fundamental assumptions. Also, ¢ need not
represent nondurable / services consumption. ¢ can represent durable goods,
or whatever object the firm sells to consumers.

The model is set up to deliver a trend G in output, capital, and consump-
tion. A Markov process for growth in the shocks rather than their deviations
from trend would be more palatable. However, that assumption leads to
solutions in which capital is a state variable, where here I am able to find
solutions in which the current shock s is the only state variable. For the
same reason, | do not include adjustment costs in the production function.

I allow both the consumption shock x and the underlying production
shock 8 to be functions of the current as well as lagged state. This gives
greater flexibility in describing variation in conditional distributions of both
shocks. Of course, models in which one or the other is only a function of the
current state are a straightforward special case.
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6.2 Solving the model, finding asset prices

To solve the model, I follow the usual procedure. I find quantities by solving
a planning problem; then [ read asset prices from marginal rates of transfor-
mation.

6.2.1 Find Quantities

The planning problem is trivial in endowment economies. Equlibrium quan-
tities are simply given by endowments. Things are not so simple in this case,
for two reasons. First, consumers have fixed-coeflicient preferences across
dates and states, but would still welcome additional consumption goods in
all dates and states. Thus, we have to solve for the level of consumption. Sec-
ond, given that firms must deliver a sequence of consumptions {é, és, ...},
there are potentially many different combinations of output and investment
choices that can deliver (at least) the given consumption sequence. Thus, we
have to find the sequence of capital, investment and output that delivers the
optimal consumption stream.

Since the technology allows one to transform output between all states
and dates, consumption will be proportional to the consumption shock.

¢t = TXt
or, detrending
¢ = (8¢, 34-1) = YX (8¢, Se-1)-

Thus, the planning problem is to choose {7, yy, &, %, d;} to maximize v
subject to the technology (39) - {43) and & = yx(s¢, 5t-1)

Using (39) - (41) to substitute output and investment in terms of capital,
and expressing the result with detrended variables, we can pose the problem
with only the shock constraint remaining as

th+2 - (1 - 6)kt+1 + 7X('3H-1"sf) *
. < 44
e st B [( O(st41, 8 ) "k e ()
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[ search for stationary solutions in which capital depends only on the
current state.® Thus, the problem is

1) o[ GRS = k()1 - 8) + vx(s, 6D \*
gy 7 T () 0w

Given the stationary solution for 4 and k(s), the remaining variables can be
found by
y(s,8") = Gk(s") = (1 = 8)k(s) + vx(s,5")

c(s,8) = 7x(5,5)
'i'(S.,S') = y(svsi) - C(S, S,)
y(s, ')
k(s)
Outuput y,; and the shock ¢ will be functions of both s,_, and s¢, even when
the shocks 6, and y, are functions of s; only. The firm chooses the more
complex distribution of the actual technology shock. Also, keep in mind that
capital is determined one period ahead of time, k; = k¢(3,-1).

€(s,8) =

8To motivate such solutions, consider a finite-period version of the model. Since cutput
can be transformed across dates and states, kr4y = 0. Then, the shock constraint (44)

implies
—kr(l - 5)+7x(sr.3’r-i))
P _
; I(ST lsT 1)( 3(-‘?7',87'—1)]"""7#-

o

=1

The left hand side is a monotonically declining function of kr which starts at +oco and
ends at 0 when yr = 0. It implies a unique value of kr for each sy_,. Thus, kr is a
function of sr_y, Er{sr_1).

Continuing, the shock constraint (44) implies

Gkr(sr-1) ~ kr—1(1 = &) + vx(s7-1, 57-2)\*
> Pr(sr-; |81'-2)( ( 1)9(3 ! 1)_,,kr1 (7o, 9723 <1
r T—IIST-Z) T-1

Again, this equation can be solved for &r_,, and kr_; is a function of sp_;. If v is not
too high (if the solution is feasible}, this process converges to a stationary solution k(s).
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6.2.2 Find Asset Prices

The producer’s first order conditions (9) imply that the marginal rate of
transformation is

€(s, )= /83, s')t1-n)
Uk(.s)”?"l + (1 - 5)E(e(3731)(0—1)/9(3,31)0(1—n) ‘ 5)

m(s,s') =

Other asset prices and returns follow from the discount factor m. The slope of
the conditional mean-standard deviation frontier is a,(m)/E.(m). The slope
of the unconditional mean-standard deviation frontier is o(m)/E(m). The
real risk-free rate is R{ = 1/E;(m41 ).

A claim to the detrended consumption stream? has price
oo 7
Pfd =k Z (H mt+k) Cij
=1 \k=1
Hence,
p(s) =) Pr(s' | s)m(s,s")(p*(s") + (s, &"))
Letting p° denote the vector of p°¥(s) over states s, p* obeys
p = Ap® 4 (A. » C)1

where
A, o = Pr(s’ | s)m(s',s), Coy = ¢(3,8"),

and .* denotes element by element multiplication. (If ¢(s, s’) is only a function
of s', then p* = Ap™ + Ac.) Hence, the price can be found from

pe=(I-A) A +O)

9The price of the actual consumption stream is infinite in the nonstochastic version
of the model, since the plan — maximize consumption — yields an interest rate equal to
the growth rate. [n stochastic versions of the model, the price is no longer infinite, but
still uncomfortably large, on the order of 10°. The returns of the claim to detrended
consumption are quite similar, but the prices are more reasonable, on the order of the
inverse growth rate, or 50. For this reason, I value the detrended consumption stream
rather than the actual consumption stream.

38



and the return follows.

A perpetuity can stand for long-term bonds. Letting p® denote a vector
of the perpetuity price in each state p°(s), the perpetuity price obeys

p* = A(p® +1)

50
pP=(I-A)'4A

and the return follows.

In addition, we can track the investment return, without explicitly finding
the price of the capital stock, from

RtI-i-l = f:+17}kf;11 +(1-=4).

6.2.3 Numerical procedure.

I solve the model by numerically searching for a solution to the first order
conditions of the planning problem (45). The choice objects are the capital
stock k{s) in each state, and the consumption multiplier 4. Starting at the
analytical solution to the first-order conditions in the nonstochastic case,
GAUSS’s equation solver NLSYS is able to find solutions to the first order
conditions in a few iterations.

6.3 simulation results

As explained above, our job is to find parameterizations of the model that 1)
generate an slope of the mean-standard deviation frontier or “risk-premium”
of roughly 0.4 as in the data, 2} generate expected returns on the invest-
ment and consumption-claim return that are greater than the risk-free rate,
mimicking stock returns, and 3) generate expected returns on the perpetu-
" ity that are roughly the same as the risk-free rate. In addition, the model
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should 4) replicate the volatility and autocorrelation of consumption, output,
investment, and capital.

Two-state itd model with no underlying productivity shock

I start with a very simple model. It does not replicate any of the above
desiderata, but its failings help to motivate the features of models that do.
There are no underlying technology shocks, so (s, s’) = 1.0. The preference
shock is only a function of the current state, x(s) = 1.02 or 0.98. Probabili-
ties Pr(s’ | s) depend only on the final state, not on the initial state. Table
7 presents the resulting equilibrium quantities, asset prices and returns.

Consumption in each state is simply proportional to the consumption
shock in that state. We will need to add autocorrelation to the consumption
shocks to get autocorrelated consumption.

In this model, the future looks the same no matter what the current
state. Therefore, capital is the same for all states. The shock is chosen so
that output is higher in states with a higher consumption shock and lower in
states with a lower consumption shock. Investment is the same in all states,
so that capital stays the same in all states.

Since output, the chosen shock ¢ and the productivity shock 8 all depend
only on the final state, so does the marginal rate of substitution. The slope
of the mean-standard deviation frontier a(m)/E(m) is 0.014, much less than
in the data. This can be cured by a higher a, and also will rise when other
features, such as persistence in shocks and variation in the underlying tech-
nology shocks, are added to the model. The risk-free rate is a constant, equal
to the growth rate of the economy.

The investment return R’ and return on the claim to detrended consump-
tion do vary. However, their standard deviations (less than a percent) are
trivial compared to the standard deviation of stock returns (roughly 20% on
an annual basis.)

The low standard deviation of investment returns is expected, and is
not likely to be solved by plausible parameterizations of this model. The
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investment return is ef’(k) + {1 — ). Variation in the marginal product of
capital or technology shock cannot plausibly account for more than a percent
or two variation in investment return. As another way to see the problem,
consumption can be freely traded for capital in a model with no adjustment
costs, so the price of installed capital is always one. To generate realistic
standard deviations of the investment return, one needs to add adjustment
costs or some other wedge between installed and uninstalled capital.

The expected values of the investment return and return to a claim on
detrended consumption are both lower than the risk-free rate. The ratios
% tell us where the return R° is relative to the minimum variance
frontier. Since the ratios are -1.00, the returns are on the lower portion of the
frontier. To explain this fact, note that both returns are positively correiated

with m as in Figure 8.

The claim to the perpetuity has constant price, and hence pays the same
return as the risk-free rate.

Adding uncorrelated technology shocks

Table 8 presents the results from a model with four states. I add a tech-
nology shock of +/- 3%. I start with a technology shock that is uncorrelated
with the preference shock.

Since the future still looks the same from each state, capital and invest-
ment are again constant. Surprisingly, output still varies only in response
to the preference shock x. The firm does not take advantage of the fact
that it is easier to produce in some states than in others. There is no point
to doing so, since the objective is to maximize the minimum consumption
across states. If the firm planned to produce more in high 8 states and less
in low @ states, a succession of low @ states would force it to lower consump-
tion. The Lagrange multiplier on the technology constraint A does vary as
the productivity shock & varies.

The addition of the technology shock raises the slope of the mean-standard
deviation frontier o(m)/E(m) to 0.04, but this is still too low. Again, a
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Table 7: Simulation of Mehra-Prescott style model. No & shock, probabilities
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do not depend on initial state. a = 2, p = 0.3.
From To state
state | s'=hi s'=lo
Assumptions
; 102 0.98
8 1.00 1.00
Pr(s' =ls) all 0.4 0.6
Equilibrium gquantities
Capital k 3.70 3.70
Output v all 1.51 1.46
[nvestment i all 0.44 0.44
mrt all 0.997 0.969
o(m)/ E{m) 0.014  0.014
Asset prices and returns
Risk-free (% ) 2.00 2.00
Investment RY (% ) all 2.20 1.863
E{R") 1.998  1.998
ER') -0.0023  -0.0023
(EJU,(R"‘)) / (U:/Eg(m)) -1.00 -1.00
Detr. cons. p® 51.8 51.8
Return (%) all 2.05 1.97
E(R) 1.9995 1.9995
E(R%) -0.0005 -0.0005
(Eg/ﬂ'g(Rcdc)) / (a‘,/E,(m)) -1.00 -1.00
Perpetuity price p° 50.0 50.0
Return R (% ) all 2.00 2.00



higher transformation coefficient @ and other modifications can easily raise
this number.

The risk-free rate and perpetuity rate are still 2%, equal to the growth
rate, and prices of all assets are still constant (since the future still looks the
same from every date). The investment return and perpetuity return are now
no longer on the bottom half of the minimum variance frontier, but still have
mean returns less than the risk free rate. Their Sharpe ratio E{R®)/a(R") is
-32% of the slope of the mean-standard deviation frontier.

Correlated preference, technology shocks

As suggested above, productivity shocks that are positively correlated
with the “preference shocks™ are a device that can lead to expected returns
greater than the risk free rate. Table 9 presents a model just like that of table
7, except that a +/- 3% technology shock has been added to the model. Since
there are oniy two states, the production and technology shocks are perfectly
correlated. The table only shows results that are substantially different from
those in table 7.

The slope of the mean-standard deviation frontier is raised to about 0.027.
Most importantly, the investment and detrended consumption claim returns
now are negatively correlated with the marginal rate of transformation, and
lie on the upper half of the minimum variance frontier., Thus, a positively
correlated technology and preference shock have just the effect suggested by
figure 7

Adding autocorrelated shocks

The previous models show no autocorrelation in any of the macroeco-
nomic variables. Next, | modify the model by selecting the transition matrix
to match the autocorrelation of detrended consumption observed in the data
(0.92). Tables 10 and 11 present the results.

Now the future does not look the same from both states: since the per-
sistence is positive, it is much more likely that the “hi” state will follow
the “hi” state. Thus, capital, output and investment all vary across states.
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Table 8: Simulation of Mehra-Prescott style model. Four state model with
uncorrelated preference, technology shocks; no serial correlation. a = 2,

n =03
From To state
state | s’=h,h s'=h,l s'=lh s'=ll
Assumptions

£ 1.02 1.02 098 098
8 1.03 097 103 0.97
Pr(s’ =] s) all 025 025 025 025

Equilibrium quantities

Capital k 3.70 370 370 3.70
A(s) ¢0.180 0.195 0.175 0.190
Output y all 1.50 1.50 1.46 146
Investment i all 0.44 0.44 044 0.44
m.r.t m all 0.95 1.04 093 1.01
a(m)/ Eiy(m) 0.044 0.044 0.044 0.044

Asset prices and returns

Risk-free (%) 200 200 200 200
Investment R! all 2.17 2.17 1.83 1.83
E.(R") (%) 1.998 1.998 1.998 1.998
(E./o(RI)} [ (04/ Ex(m)) -0.32 -032 -032 -0.32
Detr. cons. p°d 51.8 51.8 51.8 518
Return R* (% ) all | 204 204 196 196
E(R“ (%) 1.999 1999 1.999 1.999
(E./o:(R**)) [ (00/ E(m)) -0.32 -032 -0.32 -0.32

Perpetuity price p° 50 50 50 50
Return R® (% ) all | 200 200 200 2.00



Table 9: Simulation of Mehra-Prescott style model. Productivity and pref-
erence shocks are perfectly correlated. Probabilities do not depend on initial
state.

From To state
state | s'=hi s'=lo
Assumptions
¢ 1.02 0.98
) 1.03 0.97

Equilibrium quantities

o(m)/E(m) | | 0.027 0.027
Asset prices and returns

Investment R (% )

(Et/U:(RIe)) / (O't/Eg(m)) +1.00 +1.00
Detr. cons. p™
(E¢/a{ R%*)) [ (a0 Ei(m)) +1.00 +1.00

Investment is much more volatile (10.4%) than output (2.72%)

The marginal rate of substitution is still about 1/10 as volatile as it
should be: o(m)/E(m)} = 0.042 rather than 0.20. A value of & near 5 can
raise o(m)/E(m) to 0.4 without much effect on the other results. Though the
actual values of m vary by much more than 0.04, the probability of changing
states is so low, that o(m) is low.

The risk-free rate now varies as well with a 0.5 % standard deviation.

All the asset returns now vary as a function of initial as well as final states.
However, all three assets have conditional means iower than the risk-free rate
and are again on the lower half of the minimum variance frontier.

Thus, one can introduce autocorrelation through autocorrelation of the
shocks. It improves the fit of the quantity dynamics, but reintroduces ex-
pected returns less than the risk-free rate, even with perfectly correlated
shocks.
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Table 10: Simulation of Mehra-Prescott style model. Productivity and pref-
erence shocks are perfectly correlated. Probability matrix replicates persis-
tence of consumption.

From To state uncond.
state | s’=hi s'=lo moments
Assumptions
£ 1.02 098
) 1.03 097
Pr(s' =| s) hi 096 0.04

lo 0.04 0.96

Equilibrium quantities

Capital k 3.54 3.76
Output y hi 1.48 1.67
lo 1.28  1.47

a(y)/E(y) (%) 2.72
Investment i hi 0.42 0.66
lo 022 0.45

o(D)/E(1) (% ) 10.4
m.r.t. m hi 097 1.19
lo 0.79 0.99

os(m)/ Ey(m) 0.044 0.040  0.042
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Table 11: Continuation of last table.

From To state uncond.
state | s'=hi s'=lo moments
Asset prices and returns
Risk-free R = 1/E.(m) (% ) 263  1.63 2.13
o(R)) (%) 0.50
Investment R’ (% ) hi 254  4.16
lo 0.16 1.68
E(RDH (%) 261  1.62 2.11
E,(R’) -0.014 -0.012  -0.13
(Ei/o.(R™)) [ (0./ Ed(m)) -1.00 -1.00 -0.99
Detr. cons. p* 48.6 53.2
Return (%) hi 2.18 11.53
lo -6.64 1.91
E(R%) 2.55  1.56 2.06
E,(Red) -0.08  -0.06 -0.07
(Eifo(R%)) [ (o] E(m)) -1.00  -1.00 -0.99
Perpetuity price p° 470 51.8
Return R* (% ) hi | 213 124
lo -7.37 193
E(R?) 2.54  1.56 2.05
E(R") -0.089 -0.071  -0.080
(Eefo:(R*)) [ (0] Ei(m)) -1.00  -1.00  -0.99
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7 A production based asset pricing model

The empirical exercise that motivates this paper is the construction of a
production-based asset pricing model, i.e. specification and testing of a model
for the marginal rate of transformation to be used in 1 = E(mR) for a vector
of asset returns R.

7.1 Specification

[ use the technology with adjustment costs specified in section 3. In the
general equilibrium models studied in the last two sections, we could specify
a process for the shock 8, and judge success by how well the model replicated
features of the observable data. That approach is not feasible here. With an
arbitrary shock 8, we can pick its value at each data point to make the model
fit exactly. Unless we severely restrict other parts of the model, for example
by making all variables functions of a low-dimensional Markov state vector
there is no way to identify §. One must make some distributional or other
assumptions on & for the model to have any content.

In this section, I let 8,4, be a random variable known at time t. This
choice specifies that there is no underlying technology shock, i.e., that it is
not fundamentally easier to produce in one state rather than another. As a
result, the model must include labor supply, and rely on procyclical labor to
generate positive expected excess returns and a positive correlation between
returns and macroeconomic variables, as discussed in section 4.6 above.

I would like to accommodate growth, via the usual device of a technology
shock that follows a random walk with drift. Thus, In(€:41) = In(g) + In{€;) +
iid shock should be a possible choice for the firm. Equivalently, e;41/€; =
i.i.d. shock should be feasible. In addition, &;,; is known at time t. The
natural way to accomplish both objectives is to let 8y, = pe,.
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Substituting in (15}, we have

o
€1

mx = —~.
YVivr1€4

Finally, it is convenient for m=* to be a stationary variable. Exploiting the fact
that we can multiply n* by any variable known at time ¢ without changing
the pricing implications, we have

= YL (_) (46)

Yi+1 €y

Together with the moment conditions

0= Ei(mu RYyy)

for a vector of asset and investment excess returns R, (46), (17), (18) define
the testable equations for the model*®, This is a standard GMM problem.
The parameters to be estimated are §, 3,7,and 6.

7.2 Results

(To be completed.)

1%Since the production function is linearly homogeneous (average q equals marginal q)
this model aiso predicts that the investment return is equal to the market return on a
claim to the firm’s capital stock, ex-post as well as ex-ante. Cochrane (1991) exploits this
prediction.
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Appendix.

A Production sets.
A.1 Axioms for production sets.

In a two-date, finite-state economy, the commodity space is R5*! - con-
sumption today, and consumption tomorrow in each state. Thus, production
possibility sets are composed of elements

{~k, y(s)} = {-k, y(1), y(2),..., ¥(5)}

In a continuous-state economy, y is a continuously-valued random variable,
so elements of the production possibility sets can be written

{-k, y(w)}

where y(w) denotes a random variable.

Following the standard textbook treatment (for example, Varian (198x))
we define the production possibility set ¥ as all the elements {—%, y} that
the firm can achieve. I will make the following assumptions about production
possibility sets.

Al. Free disposal.
f {~k, y} €Y, then y’ <y and ¥ > k implies {—¥', y'} € V.
This assumption just states that the firm can throw away inputs or outputs.

A2. Convexity.

f{-k,n}eY,{-k,neYandd<a<l,
then {—(ak: + (1 — a)k;), ay; + (1 — a)y.} € Y.

This assumption is less obvious. For example, it says that if the firm can
achieve two distributions of technology shocks, then it can achieve any tech-
nology shock that is a linear combination of the first two.

50



For motivation, note that the production sets derived by aggregating
fixed-coeflicient production functions as in the last section are convex:

Lemma: Free disposal (Al) and convex f(k) imply convex Y in the
above aggregation model.

Proof: Recall that total output is given by

yiw) = / dz Mw, 2)f(k(2)).

Constructing the right hand side for a linear combination of inputs k, and
k2, the firm can produce an amount

y(w) = [ dz Muw, 2)f(aky(z) + (1 = a)ka(2)).
Since f is assumed concave,

flaky(z) + (1 = a)ke(z)) 2 af(ki(2)) + (1 = @) f(k:(z))

Hence,
y'(w) 2 [dz AMw, 2)[af(ki(2) + (1 — &) f(ka(2))] = apn(w) + (1 — )ya(w).
By free disposal, the amount ay;(w)+ (1 ~a)y2(w) must therefore be feasible.

O

So far, production sets with kinks such as in figure 1 are still accom-
modated. The next assumption establishes the existence of at least some
smoothness across states.

The firm can replicate assets by making small marginal investments. The
production set is smooth when the cost to the firm of replicating a small long
position is the same as its gain from replicating a small short position. To
make this notion precise, let pi({ for long) denote the least cost to the firm
to replicate a small fraction of a payoff z(w):

~ Kok
P= w8

) s.t.
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Figure 11: Synthesizing a contingent claim with kinked technology

y'(w) —y(w) 2 bz(w), {—k y(w)} €Y, {-F, y(w)} €Y, 6> 0.

Similarly, let p,(s for "short”) denote the greatest savings for the firm to
replicate a small fraction of the negative of z(w),

. k — kﬂ'
Ps = kf.;}:(laf.;).s( 5 )

s.t.
y(w) ~y"(w) 2 bz(w), {=k, y(w)} €Y, {-+", y"(w)} e Y,6>0.
Note that p; and p, may depend on where the firm is currently producing.

In general, p; and p, are not equal. For example, consider a firm with
a kinked production technology as in figure 11. Here, the firm is trying to
synthesize contingent claims to the h state. To sell such a claim, is must
produce more, and then discard any I state output. To buy such a claim,
it only needs to throw away some | state output, with no change in inputs.
Thus, p; is positive and p, is zero. With a smooth production set, as in figure
12, pr and p, are the same.

Define X to be the set of payoffs the firm can price uniquely,

X = {z(w) s.t. pr =p,}.
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Figure 12: Synthesizing a contingent claim with smooth technology

With a kinked production set, only claims whose payoffs are proportional
to the production shock have the same buy and sell prices p; and p,.

Ada: X = {z{w): z(w) = ae(w)}

The opposite extreme is that the firm can modify its shock to uniquely price
any possible asset:
A3b: X = L?

where L? represents the space of all (finite second moment) random variables!!.

Assumption A3b is too much to reasonably hope for. Thinking in terms
of the aggregation model of section 2, if a random variable is independent
of the production shocks of all the underlying technologies (this week’s lotto
drawing, phase of the moon) then we cannot hope that the firm can rearrange
its production to make a marginal change in total output whose distribution
matches that random variable.

However, we are often interested in pricing much smaller sets of state-
contingent securities. For example, for pricing NYSE stocks, we only need
to assume

Alc: X = {c¢- R, R = vector of N NYSE asset returns }

HOne often limits the commedity space to finite-second moment random variables in
asset pricing applications to ensure that prices, represented by second moments, exist.
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Even this assumption may be more stringent than needed for many ap-
plications. A large body of research in finance examines "arbitrage pricing”
models, in which the pricing of a large number of assets can be reduced to
pricing a few systematic macroeconomic "factors”. Asset returns are ex-
pressed as a linear combination of the factors ¢ - f plus zero-price residuals.
In this case, we could uniquely price assets assuming only

A3d: X = {c- f, f = k-dimensional vector of factors}

A.2 First order conditions for optimization

Given a production set that satisfies axioms Al — A3, we can derive relations
between production variables and asset payoffs from firms’ first order condi-
tions. The simplest statement given the current set-up is, the firm removes
any arbitrage opportunities between physical investment and asset payoffs.

More precisely, suppose the firm can trade an asset with payoff x. Re-
calling the definition of p; and p, as the smallest price at which the firm
can synthesize a marginal long position and largest price at which it can
synthesize a marginal short position with payoff £, we must have that

ps < price of x < p.

If not, the firm would synthesize such marginal assets and sell them, making
arbitrage profits. Obviously, when p; = p,, we can assign a unique price to
the payoff # from knowledge of where the firm is operating in its production
set.

A.3 Existence and Differentiability of production functions.

Assumptions Al and A2 on production sets imply the existence of a function

gly(s), —=k) : R = R
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that is monotone and convex, and g{(-) > 0 for {y, =k} € Y,g(-) < 0 for
{y, =k} notinVY.

Assumptions A3 translate into the differentiability of the production func-
tions. If all derivatives of ¢ exist, then we can price any payoff as in A3b.
Totally differentiating the production function

> 8g/8y(s)dy(s) = dg/Okdk.

To price a payoff z(s), consider changing output y in the direction z, so
dy(s) = 6 x(s). Then the price of z must be dk/é or

Y 9/8y(s)z(s)/(Dg/ k).

Production functions that price only payoffs in X C R% have only directional
derivatives in X.

B Estimating production functions

In estimating standard production functions y = ¢f(k,{), one often runs
a regression such as Iny; = 9lok, + (1 — n)ln¢, or similar nonparametric
procedures. It would seem that production function estimation is relatively
straightforward. This approach does not easily extend to estimation of the
shock choice set, unless we observe the entire information set that the firm
observes.

Suppose we have a long dataset of inputs and outputs. Consider a few
special cases:

Case 1: Contingent claims prices (equivalently, the conditional distribu-
tion of all asset returns) are constant over time.

Since prices are constant, inputs k¥ and the output random variable y(w)
will be constant over time. Thus, in this case, the data simply fill out one
point in the production possibility set: one input k, and one random variable
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for cutput y. Without some variation in prices to induce some variation in
the firm’s choice of input and output, we won’t map out the set of random
variables for output.

Case 2: The conditional distribution of asset returns varies with a vector
of instruments z, which we and the firm observe.

As z varies over time, the chosen input k, & | z, and random variable for
output y(w) | z will change too. Now, we can see some changes in the random
output chosen by firms, so we can price some asset payoffs. However, there
is no reason to expect that the firm will choose every point in its production
set for some value of z. Hence, we may see only a subset of the asset pricing
implications.

Case 3: The conditional distribution of asset returns varies with an in-
strument z, which the firm observes, and which we do not.

Since we do not observe z, this situation looks to us like case 1, no change
in the conditional distribution of asset returns. But now the random variable
y* we observe is a mixture of the random variables actually chosen by the
firm.

* (w) = /dPr w) | z).

The assumption of convexity (A2) implies that {k, y * (w)} so defined
is also in the production set. Thus, though the firm will have the ability to -
vary its output random variable more than we think, the production set we
can see {k, y * (w}} may be a stricct subset of the true production set. The
elements {k, y*(w)} we observe will typically not be on the boundary of the
production set.
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